
Chapter 4 

Applications of First-order Differential Equations to Real World 

Systems 

4.1 Cooling/Warming Law 

4.2 Population Growth and Decay 

4.3 Radio-Active Decay and Carbon Dating  

4.4 Mixture of Two Salt Solutions  

4.5 Series Circuits 
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4.10 Drug Distribution in Human Body  

4.11 A Pursuit Problem  

4.12 Harvesting of Renewable Natural Resources  

4.13 Exercises  

In Section 1.4 we have seen that real world problems can be represented 

by  first-order differential equations.  

In chapter 2 we have discussed few methods to solve first order 

differential equations. We solve in this chapter first-order differential equations 

modeling phenomena of cooling, population growth, radioactive decay, mixture of 

salt solutions, series circuits, survivability with AIDS, draining a tank, economics 
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and finance, drug distribution, pursuit problem and harvesting of renewable 

natural resources. 

4.1 Cooling/Warming law 

We have seen in Section 1.4 that the mathematical formulation of 

Newton’s empirical law of cooling of an object in given by the linear first-order 

differential equation (1.17) 

)mTα(T
dt

dT
−=  

This is a separable differential equation. We have  

αdt
)mT(T

dT
=

−
 

or   ln|T-Tm
 |=t+c1 

or T(t) = Tm+c2et  (4.1) 

Example 4.1: When a chicken is removed from an oven, its temperature is 

measured at 3000F. Three minutes later its temperature is 200o F. How long will it 

take for the chicken to cool off to a room temperature of 70oF. 

Solution: In (4.1) we put Tm = 70 and T=300 at for t=0. 

T(0)=300=70+c2e.0 

This gives c2=230 

For t=3, T(3)=200 

Now we put t=3, T(3)=200 and c2=230 in (4.1) then  

200=70 + 230 e.3 

or  
230

1303αe =  
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or 
23

13
ln3 =  

or 19018.0
23

13
ln

3

1
−==  

Thus  T(t)=70+230 e-0.19018t   (4.2) 

We observe that (4.2) furnishes no finite solution to  T(t)=70 since  

limit T(t) =70. 

   t→  
The temperature variation is shown graphically in Figure 4.1. We observe 

that the limiting temperature is 700F. 

 

 

 

 

Figure  4.1 

4.2 Population Growth and Decay 

We have seen in section 1.4.1 that the differential equation  

)(
)(

tkN
dt

tdN
=  

where N(t) denotes population at time t and k is a constant of 

proportionality, serves as a model for population growth and decay of insects, 

animals and human population at certain places and duration.  

Solution of this equation is  

N(t)=Cekt
, where C is the constant of integration:  

kdt
tN

tdN
=

)(

)(
 



 81 

Integrating both sides we get 

lnN(t)=kt+ln C 

or  kt
C

tN
=

)(
ln  

or     N(t)=Cekt 

C can be determined if N(t) is given at certain time.  

Example 4.2:  The population of a community is known to increase at a rate 

proportional to the number of people present at a time t. If the population has 

doubled in 6 years, how long it will take to triple? 

Solution : Let N(t) denote the population at time t. Let N(0) denote the initial 

population (population at t=0). 

)(tkN
dt

dN
=  

Solution is  N(t)=Aekt , where A=N(0) 

Ae6k=N(6) =2N(0) = 2A 

or e6k=2 or k = 
6

1
ln 2 

Find t when N(t)=3A=3N(0) 

or  N(0) ekt=3N(0) 

or 
t

e
)2(ln

6

1

3 =  

or ln 3= 
6

)2(ln t
 

or  t= 
2ln

3ln6
9.6 years (approximately 9 years 6 months) 
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Example 4.3 Let population of country be decreasing at the rate proportional to 

its population. If the population has decreased to 25% in 10 years, how long will it 

take to be half? 

Solution:  This phenomenon can be modeled by )t(kN
dt

dN
=  

Its solution is  

N(t)=N(0) ekt, where 

N(0) in the initial population  

For t=10,    N(10)=
4

1
N(0) 

4

1
N(0)  =  N(0) e10k 

or e10k=
4

1
 

or k=
10

1
ln 

4

1
 

Set N(t)=
4

1
N(0) 

)0(N
2

1
e)0(N

t
4

1
ln

10

1

=  

or t=

4

1
ln

10

1
2

1
ln

     8.3 years  approximately.  

Example 4.4 Let N(t) be the population at time t and Let N0 denote the initial 

population, that is, N(0)=N0. 

Find  the solution of the model  



 83 

2)()( tbNtaN
dt

dN
−=  

with initial condition  

N(0)=No 

Solution: This is a separable differential equation, and its solution is  

tdsds
)s(bN)s(aN

)s(dN t

02

t

0
==

−   

bNa

B

N

A

)bNa(N

1

bNaN

1
2 −

+=
−

=
−

 

To find A and B, observe that  

)(

)(

)(

)(

bNaN

NbABAa

bNaN

BNbNaA

bNa

B

N

A

−

−+
=

−

+−
=

−
+  

Therefore, Aa+(B-bA)N=1. Since this equation is true for all values of N, 

we see that Aa=1 and B-bA=0. Consequently, A=
a

1
, B=b/a, and  

)bsa(s

ds
N

N0 −
  

=

 
ds)

bsa

b

s

1
(

a

1 N

No −
+

 













−

−
+=

bNa

obNa

oN

N

a
lnln

1
 

|
bNa

bNa
|

N

N
ln

a

1 o

o −

−
 

Thus  

at  =  ln
bNa

bNa

N

N 0

0 −

−
 

It can be verified that   
)t(bNa

bNa o

−

−
 is always positive for 0<t<∞.  Hence 
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  at = ln 
bNa

bNoa

N

N

o −

−
 

 Taking exponentials of both sides of this equation gives   

 eat=
bNa

obNa

oN

N

−

−
 

 N0(a-bN)eat   =   (a-bN0)N 

Bringing all terms involving N to the left-hand side of this equation, we see 

that  

[a-bNo + bN0eat] N(t) = aN0eat 

or N(t)=
ateobNobNa

ateoaN

+−
 

4.3 Radio-active Decay and Carbon Dating  

As discussed in Section 1.4.2. a radioactive substance decomposes at a 

rate proportional to its mass. This rate is called the decay rate. If m(t) represents 

the  mass of a substance at any time, then the decay rate  
dt

dm
is proportional to 

m(t).  Let us recall that the half-life of a substance is the amount of time for it to 

decay to one-half of its initial mass.  

Example 4.5. A radioactive isotope has an initial mass 200mg, which two years 

later is 50mg. Find the expression for the amount of the isotope remaining at any 

time. What is its half-life? 

Solution: Let m be the mass of the isotope remaining after t years, and let -k be 

the constant of proportionality. Then the rate of decomposition is modeled by  

dt

dm
= - km, 
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where  minus sign indicates that the mass is decreasing. It is a separable 

equation. Separating the variables, integrating, and adding a constant in the form 

lnc, we get  

lnm+lnc = - kt 

Simplifying,  

lnmc = - kt      (4.3) 

or  mc = e-kt 

or  m = c1e-kt, where c1=
c

1
 

To find c1, recall that m =200 when t=0. Putting these  values of m 

and t in (4.3) we get 

200 = c1 e-ko = c1.1 

or c1=200 

and  m  = 200e-kt        (4.4) 

The value of k may now be determined from (4.4) by substituting t=2, 

m=150. 

150 = 200 e-2k 

or  
4

32 =− ke  

or –2k=ln 
4

3
 

This gives  

2

1

3

4
ln

2

1
k == (0.2877)= 0.1438   0.14 

The mass of the isotope remaining after t years is then given  by  
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m(t) =200e -.1438t 

The half-life th is the time corresponding to m=100mg.  

Thus  

100 = 200 e-0.14t
h 

or 
2

1
= e-0.14t

h 

or th= - years95.4
14.0

693.0
5.0ln

14.0

1
=

−

−
=  

Carbon Dating: The key to the carbon dating of paintings and other materials 

such as fossils and rocks lies in the phenomenon of radioactivity discovered at 

the turn of the century. The physicist Rutherford and his colleagues showed that 

the atoms of certain radioactive elements are unstable and that within a given 

time period a fixed portion of the atoms spontaneously disintegrate to form atoms 

of a new element. Because radioactivity is a property of the atom, Rutherford 

showed that the radioactivity of a substance is directly proportional to the number 

of atoms of the substance present. Thus, if N(t) denotes the number of atoms 

present at time t, then 
dt

dN
, the number of atoms that disintegrate per unit time, is 

proportional to N; that is,  

−=
dt

dN
N     (4.5) 

The constant , which is positive, is known as the decay constant of the 

substance. The larger  is, the faster the substance decays.  

To compute the half life of substance in terms of , assume that at time 

t=t0, N(t0)=N0. The solution of the initial value problem 
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−=
dt

dN
N      

N(t0) = N0     (4.6) 

is   

N(t)=N0e-(t-t
o) 

or       
oN

N
e-(t-t

o) 

Taking logarithms of both sides we obtain  

- (t-t0)=ln

oN

N
       (4.7) 

If 
oN

N
= 

2

1
, then  - (t-t0)=ln 

2

1
,  so that  

t-t0 = 
 

6931.0

 

2ln


=


 

Thus the half life  of a substance is ln2 divided by the decay constant . 

The half-life of many substances have been determined and are well 

published. For example, half-life of carbon-14 is 5568 years, and the half-life of 

uranium  238 is 4.5 billion years.  

Remark 4.3.1 a) In (4.5)  is positive and is decay constant. We may write  

 equation (4.5) in the form 

=
dt

dN
N,  where  is negative constant, that is,  <0.  

b)  The dimension of   is reciprocal time. It t is measured in years, then  

has the dimension of  reciprocal years, and if t is measured in minutes, 

then  has the dimension of reciprocal minutes.  
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c)  From (4.7) we can solve for  

t-t0= 
N

N
ln

1 o


    (4.8) 

If t0 is the time the substance was initially formed or manufactured, then 

the age of the substance is 
N

N
ln

1 0


. The decay constant  is known or can be 

computed in most cases. N can be computed quite usually. Computation or pre-

knowledge of N0 will yield the age of the substance.  

By the Libby’s discovery discussed in Section 1.4.2. the present rate R(t) 

of disintegration of the C-14 in the sample is given by R(t)= N(t)= N0e-t and the 

original rate of disintegration is R(o)=N0. Thus  

te
R

tR −=
)0(

)(
  so that  

t=
)(

)(
ln

1

tR

oR


     (4.9) 

d) If we measure R(t), that present rate of disintegration of the C-14 in the 

charcoal and observe that R(o) must equal the rate of disintegration of the C-14 

in the comparable amount of living wood then we can compute the age t of the 

charcoal.  

e) The process of estimating the age of an artifact is called carbon 

dating.  

Example 4.6 :  Suppose that we have an artifact, say a piece of fossilized wood, 

and measurements show that the ratio of C-14 to carbon in the sample is 37% of 

the current ratio. Let us assume that the wood died at time 0,  then compute the 

time T it would take for one gram of the radio active carbon to decay this amount.   
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Solution:  By model (1.10) 

km
dt

dm
=  

This is a separable differential equation. Write it in the form  

 kdtdm
m

=
1

 

Integrate it to obtain  

 ln|m|=kt+c 

Since mass is positive, lml=m and  

ln(m)=kt+c. 

Then  

 m(t) = e kt+c=Aekt, where A = ec  is positive constant. Let at some time, 

designated at time zero, there are M grams present. This is called the initial 

mass. Then 

 m(o) = A = M, so 

 m(t) = Mekt. 

 If at some later time T we find that there are MT grams, then  

 m(T) = MT = MekT. 

Then  

 kT
M

M
ln T =








 

hence 

 







=

M

TM

T
k ln

1
 

 This gives us k and determines the mass at any time: 
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 m(t) = 









M

M
ln

T

t T

Me  

 Let T= be the time at which half of the mass has radiated away, that is, 

half-life. At this time, half of the mass remains, so MT=M/2 and MT/M = 
2

1
. 

Now the expression for mass becomes 

m(t) = 
)

2

1
ln(

t

Me  

or   m(t) = 
2ln

t

Me 
−

               

Half-life of C-14 is 5600 years approximately, that is, 

 = 5600 

00012378.0
5600

2ln
−  

 means approximately equal (all decimal places are not listed). 

Therefore 

m(t)=Me -0.00012378t 

or  te
M

tm 00012378.037.0
)( −==  

by the given condition that 
M

tm )(
 is .37 during t. 

T= - =
00012378.0

)37.0ln(
 8031 years approximately. 

Example 4.7  (a) A fossilized bone is found to contain one thousandth the 

original amount of C-14. Determine the age of fossil. 
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  (b) Use the information provided in part (a) to determine the 

approximate age of a piece of wood found in an archaeological excavation at the 

site to date prehistoric paintings and drawing on the walls and ceilings of a cave 

in Lascaux, France, provided 85.5% of the C-14 had decayed.  

Solution: a. The separable differential equation  

 )(tNk
dt

dN
= , where k is the constant of proportionality of decay, models 

the phenomenon as discussed above. 

The solution  is 

 N(t) = N0ekt  (say  = -k, if we want to put in the form of the above 

discussion). 

 Half-life of C-14 is approximately 5600 years 

 
2

No = N(5600) 

or 
2

1
 N0 = N0e5600k. By cancelling N0 and taking logarithm of both sides we get 

 2ln
2

1
ln5600 −==k  

 or k= -
5600

2ln
 = -0.00012378 

Therefore 

 N(t) = N0 e-0.00012378t  

 With N(t) = 0
1000

1
N  we have  

 
1000

1
N0=N0e-0.00012378t  
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-0.00012378t = ln
1000

1
= - ln 1000.  Thus 

yrs55800
00012378.0

1000ln
t =  

(b) Let N(t)= N0ekt where k= -0.00012378 by part (a).  

85.5% of C-14 had decayed; that is,  

N(t) = 0.145 N0 

       or      N0e - 0.00012378t = 0.145 No 

Taking logarithm of both sides and solving for t, we get 

t15,600 years 

4.4 Mixture of Two Salt Solutions  

Example. 4.8 A tank contains 300 litres of fluid in which 20 grams of salt is 

dissolved. Brine containing 1 gm of salt per litre is then pumped into the tank at a 

rate of 4 L/min; the well-mixed solution is pumped out at the same rate. Find the 

number N(t) of grams of salt in the tank at time t.  

Solution:   By the data given in this example we have  

 P(t ) = N(t) 

 n=4,  p=1, m=300 

 in the model (1.23) 

 
75

44.
300

4
)( PP

dt

tdP
−=−=  

or 4
75

P

dt

)t(dP
=+  

 This is a linear differential of first order in P whose integrating factor is  
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t

e
dt

e 75

1

75

1

=


    (See Section 2.3) 

Solution is given by   

cdt
t

e
t

etP += 75

1

475

1

).(  

P(t) = 300 + c
t

e 75

1

.
−

 

 

 Since P(0) = 20 is given we get 

 20=P(0) = 300+Ce0, that is c= -280 

 Thus P(t) = 300 - 280
t

e 75

1
−

 

4.5 Series Circuits 

Let a series circuit contain only a resistor and an inductor as shown in Figure 4.2 

 

 

 

Figure 4.2   LR Series circuit 
 

 By Kirchhoff’s second law the sum of the voltage drop across the 

inductor  









dt

di
 and the voltage drop across the resistor (iR) is the same as the 

impressed voltage (E(t)) on the circuit.  Current at time t, i(t), is the solution of the 

differential equation.  

)(tERi
dt

di
=+       (4.10) 
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where  and R are constants known as the inductance and the resistance 

respectively. 

The voltage drop across a capacitor with capacitance C is given by 
C

)t(q
, 

where q is the charge on the capacitor. Hence, for the series circuit shown in 

Figure 4.3 we get the following equation by applying Kirchhoff’s second law  

)(
1

tEq
C

Ri =+      (4.11) 

 

 

 

 

Figure 4.3  RC Series Circuit 

Since 
dt

dq
i = , (4.11) can be written as 

)t(Eq
C

1

dt

dq
R =+      (4.12) 

Example 4.9  Find the current in a series RL circuit in which the resistance, 

inductance, and voltage are constant. Assume that i(o)=0; that is initial current is 

zero. 

Solution:  It is modeled by (4.10) 

)t(ERi
dt

di
=+  

or   


=


+
)t(E

i
R

dt

di
     (4.13) 

Since , R and E are constant 
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(4.13) is linear equation of first-order in i with integrating factor  

=


tR

e

dtR

e  

The solution of (4.13) is 

 

c
R

tR

e
Et

R

e)t(ior

dt

tR

e
E

tR

e)t(i

+



=




=

 

or i(t)   =  
t

R

ce
R

E 
−

+     (4.14) 

Since i(0) = 0, c = -
R

E
 

Putting this value of c in (4.14) we get 

)1()(
t

R

e
R

E
ti 

−
−=  

Example 4.10 A 100-volt electromotive force is applied to an RC series circuit in 

which the resistance is 200 ohms and the capacitance is 10-4 farads. Find the 

charge q(t) on the capacitor if q (0)=0. Find the current i(t). 

Solution:   The phenomenon is modeled by (4.12): 

)(
1

tEq
Cdt

dq
R =+  ,    where  

R=200, C=10-4, E(t) = 100 

Thus  

2

1410
200

1
=+ q

dt

dq

       (4.15)
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This is a linear differential equation of first-order  

The integrating factor is t50edt50e =  

and so the solution of (4.15) is  

q(t)e50t= cdtt50e
2

1
+  

or q(t)= tce 50

100

1 −+  

q(0)=0= 0.50ce
100

1 −+  

or 
100

1
c −=  and so 

t50e
100

1

100

1
)t(q −−=  

t50e
2

1

dt

)t(dq −=  

But 
dt

)t(dq
i =  and so 

 i= t50e
2

1 −  

4.6 Survivability with AIDS 

Equation (1.31) provides survival fraction S(t). It is a separable equation 

and its solution is 

S(t) =Si+(1-Si)e-kt: 

Given equation is 

))((
)(

iStSk
dt

tdS
−−=  
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kdt
iStS

dS
−=

−)(
 

Integrating both sides, we get 

ln|S(t)-Si|=-kt+lnc 

kt
c

|iS)t(S|
ln −=

−
 

or   kte
c

iS)t(S −=
−

 

 S(t)=Si+ce-kt 

Let S(0)=1 then c=1-Si. Therefore 

S(t) =Si +(1-Si)e-kt 

We can rewrite this equation in the equivalent form. 

S(t)=Si+(1-Si)e-t/T 

where, in analogy to radioactive nuclear decay,  

T is the time required for half of the mortal part of the cohort to die-that is, 

the survival half life.  

Example 4.11  Consider the initial-value problem 

1)0(S

)16.4()iS)t(S(k
dt

)t(dS

=

−−=
 

as the survivability with AIDS. 

(a) Show that, in general, the half-life T for the mortal part of the 

cohort to die is 
k

T
2ln

=  

(b) (b) Show that the solution of the initial value problem can be 

written as  
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S(t)=Si+(1-Si)2-t/T     (4.17) 

Solution: The solution of the separable differential equation in (4.16) is  

S(t) = (1-Si)e-kt+Si     (4.18) 

Let S(t) =
2

1
S(0), and solving for t we obtain the half=life T =

k

2ln
 

(b) Putting 
2ln

T
k =  in (4.18) we obtain 

t
T

eSiSitS 2ln)1()(
−

−+=  

4.7 Draining a Tank 

In Section 1.4.8 modeling of draining a tank is discussed. Equation (1.26) 

models the rate at which the water level is dropping. 

Example 4.12 A tank in the form of a right-circular cylinder standing on end is 

leaking water through a circular hole in its bottom. Find the height h of water in 

the tank at any time t if the initial height of the water is H.  

Solution:  As discussed in Section 1.4.8, h(t) is the solution of the equation  

(1.26); that is,  

gh2
A

B

dt

dh
−=     (4.19) 

where A is the cross section area of the cylinder and B is the cross 

sectional area of the orifice at the base of the container.  

(4.19) can be written as 

dtg2
A

B

h

dh
−=  
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or  Cdt
h

dh
=  where 

g2
A

B
C −=  

By integrating this equation we get 

'cCt2

1

h2 +=  

For t=0  h=H and so 

2

1

H2'c =  Therefore   

h(t) =

2

2

2

1

H2Ct





















+
 

4.8 Economics and Finance  

We have presented models of supply, demand and compounding interest 

in Section 1.4.3. We solve those models, namely equations (1.11) and (1.16).  

(1.11), that is equation  

)SD(k
dt

dP
−=  is a separable differential equation of first-order. We can 

write it as  

dP=k(D-S) dt. 

Integrating both sides, we get  

P(t)=k(D-S)t+A 

where A is a constant of integration. 

Solution of (1.16), which is also a separable equation, is  
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S(t)=S(0) ert      (4.20) 

where S(0) is the initial money in the account   

Example 4.13  Find solution of the model of Example 1.21 with no initial demand 

(D(0)=0). 

Solution:  The model is  

D

t
k

dt

dD
=  

This can be written as  

D1/2dD=k tdt 

Integrating both sides we get  

,2

2

12

3

3

2
AtkD +=  

where A is a constant integration. If Demand D=0 at the initial time t=0, 

then A=0 and demand D(t) at any time t is given by  

3

2

4

2kt3
)t(D














=  

4.9 Mathematics Police Women 

The time of death of a murdered person can be determined with the help 

of modeling through differential equation. A police personnel discovers the body 

of a dead person presumably murdered and the problem is to estimate the time 

of death. The body is located in a room that is kept at a constant 70 degree F. 

For some time after the death, the body will radiate heat into the cooler room, 

causing the body’s temperature to decrease assuming that the victim’s 
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temperature was normal 98.6F at the time of death. Forensic expert will try to 

estimate this time from body’s current temperature and calculating how long it 

would have had to lose heat to reach this point.  

According to Newton’s law of cooling, the body will radiate heat energy 

into the room at a rate proportional to the difference in temperature between the 

body and the room. If T(t) is the body temperature at time t, then for some 

constant of proportionality k,  

T'(t)=k[T(t)-70] 

This is a separable differential equation and is written as 

kdtdT
70T

1
=

−
 

Upon integrating both sides, one gets 

ln|T-70|=kt+c 

Taking exponential, one gets 

|T-70|=ekt+C=Aekt 

where A = eC. Then 

T-70=  Aekt= Bekt 

Then  

T(t)=70 + Bekt 

Constants k and B can be determined provided the following information is 

available: Time of arrival of the police personnel, the temperature of the body just 

after his arrival, temperature of the body after certain interval of time.  

Let the officer arrived at 10.40 p.m. and the body temperature was 94.4 

degrees. This means that if the officer considers 10:40 p.m. as t=0 then  
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T(0)=94.4=70+B   and   so  

B=24.4 giving  

T(t)=70 + 24.4 ekt. 

 Let the officer makes another measurement of the temperature say after 

90 minutes, that is, at 12.10 a.m. and temperature was 89 degrees. This means 

that  

T(90)=89=70+24.4 e90k 

Then  

  ,
4.24

19k90e =  

so 

 







=

4.24

19
ln90k  

and 

 







=

4.24

19
ln

90

1
k  

The officer has now temperature function  










+= 4.24

19
ln

90

t

e4.2470)t(T  

In order to find when the last time the body was 98.6 (presumably the time 

of death), one has to solve for time the equation 










+== 4.24

19
ln

90

t

e4.24706.98)t(T  

To do this, the officer writes 
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








= 4.24

19
ln

90

t

e
4.24

6.28
 

and takes logarithms of both sides to obtain  









=









4.24

19
ln

904.24

6.28
ln

t
 

Therefore, the time of death, according to this mathematical model, was  

)4.24/19ln(

)4.24/6.28ln(90
t =    which is approximately –57.0.7 minutes. 

The death occurred approximately 57.07 minutes before the first 

measurement at 10.40 p.m. , that is at 9.43 p.m. approximately 

4.10 Drug Distribution (Concentration) in Human Body 

To combat the infection to human a body appropriate dose of medicine is 

essential. Because the amount of the drug in the human body decreases with 

time medicine must be given in multiple doses. The rate at which the level y of 

the drug in a patient’s blood decays can be modeled by the decay equation 

ky
dt

dy
−=  

where k is a constant to be experimentally determined for each drug. If initially, 

that is, at t=0 a patient is given an initial dose yp, then the drug level y at any time 

t is the solution of the above differential equations, that is,  

y(t)=yp e-kt 

Remark: 4.10.1.   In this model it is assumed that the ingested drug is absorbed 

immediately which is not usually the case. However, the time of absorption is 

small compared with the time between doses.  
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Example 4.14: A representative of a pharmaceutical company recommends that 

a new drug of his company be given every T hours in doses of quantity y0, for an 

extended period of time. Find the steady state drug in the patient’s body. 

Solution: Since the initial dose is y0, the drug concentration at any time t ≥o is 

found by the equation y=y0e-kt, the solution of the equation    ky
dt

dy
−=  

At t=T the second dose of y0 is taken, which increases the drug level to  

y(T)=y0+y0 e-kT =  y0(1+e-kT) 

The drug level immediately begins to decay. To find its mathematical 

expression we solve the initial-value problem: 

ky
dt

dy
−=  

y(T)=y0(1+e-kT) 

Solving this initial value problem we get 

y=y0(1+e-kT)e-k(t-T) 

This equation gives the drug level for t>T. The third dose of y0 is to be 

taken at t=2T and the drug just before this dose is taken is given by  

kTekTeoyTTkekTeoyy −−+=−−






 −+= )1()2(1  

The dosage y0 taken at t=2T raises the drug level to  

y(2T)  = y0 + y0(1+e-kT)e-kT = y0(1+e-kT+e-2kt) 

Continuing in this way, we find after (n+1)th dose is taken that the drug 

level is  

y(nT)=y0(1+e-kT+e-2kT+…..+e-nkT) 
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We notice that the drug level after (n+1)th dose is the sum of the first n 

terms  of a geometric series, with first term as yo and the common ratio e-kT. This 

sum can be written as  

kTe

kTneoy
nTy

−−

+−−
=

1

))1(1(
)(  

As n becomes large, the drug level approaches a steady state value, say 

ys given by  

ys  =  lim y(nT)   

         n→ 
 

=
kTe1

oy

−−
 

The steady state value ys is called the saturation level of the drug.  
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4.11 A Pursuit Problem 

 

 

 

 

 

Figure 4.4 

A dog chasing a rabbit is shown in Figure 4.4. The rabbit starts at the 

position (0,0) and runs at a constant speed vR along the y-axis. The dog starts 

chase at the position (1.0) and runs at a constant speed vD so that its line of sight 

is always directed at the rabbit. If vD>vR, the dog will catch the rabbit; otherwise 

the rabbit gets away. Finding the function representing the pursuit curve gives 

the path the dog follows. Since the dog always runs directly at the rabbit during 

the pursuit, the slope of the line of sight between  the dog and the rabbit at any 

time t is given by  

x

R
yy

R
xx

R
yy

m
−

=
−

−
=  

If we assume that the line of sight is tangent to the pursuit curve y=f(x), 

then  m= 
dx

dy
 and therefore 

x

R
yy

dx

dy −
=   (4.21) 

is the mathematical model of the “Pursuit Problem”.  The solution of (4.21) 

will give the path taken by the dog.  

The position of the dog at any time t>0 is (x,y), and the y coordinate of the 

rabbit at the corresponding time is yR=0+vRt =vRt,   so  
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x

tvy

dx

dy R−
=  

or   tvy
dx

dy
x R−=  

Implicitly differentiating this expression with respect to x yields  









−=+

dx

dt
v'y'y"xy R  

where  
dx

dy
y

dx

yd
y =














= ',

2

2
"  

This may be written as  

dx

dt

v

"xy

R

−=       (4.22) 

Finally, we note that the speed of the dog can be written as  

 

22

dt

dy

dt

dx

dt

ds

D
v 








+








−==  

 
2

1 







+−=

dx

dy
 

dt

dx
 

Solving this for 
dx

dt
, we have  

2

)'y(1

D
v

1

dx

dt
+−=  

Substituting this result into Equation (4.22) yields  

2)'y(1
Dv

1

R
v

"xy
+=  

Put y'=w, then this equation takes the form 
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2w1
Dv

1

Rv

'xw
+=  

or 
x

dx

Dv

R
v

2w1

dw
=

+

 

        Integrating both sides we get w and by integrating w we get y. The  constant 

of integration can be found by using the initial conditions y(1)=0 and y' (1)=0. 

4.12 Harvesting of Renewable Natural Resources 

There are many renewable natural resources that humans desire to use. 

Examples are fishes in rivers and sea and trees from our forests. It is desirable 

that a policy be developed that will allow a maximal harvest of a renewable 

natural resource and yet not deplete that resource below a sustainable level. We 

introduce a mathematical model providing some insights into the management of 

renewable resources.  

Let P(t) denote the size of a population at time t, the model for exponential 

growth begins with the assumption that kP
dt

dP
=  for some k>0. In this model the  

relative or specific, growth rate defined by  

P
dt

dP
/  

is assumed to be a constant.  

In many cases P
dt

dP
/  is not  constant but a function of P, let  

 P/
dt

dP
  = f(P) 
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or  )(PfP
dt

dP
=  

Suppose an environment is capable of sustaining  no more than a fixed 

number K of individuals in its population. The quantity is called the carrying 

capacity of the environment.  

Special cases: (i) f (P)=c1P +c2 

   (ii) If f(0)=r  and  f(K)=0 then 

   c2=r  and c1= -
k

r
, and  so (i) takes the form  

   f (P) = r-(
k

r
)P. 

Simple Renewable natural resources model is  

)( P
K

r
rP

dt

dP
−=  

This equation can  also be written as 

)( bPaP
dt

dP
−=  

Example 4.15:  Find the solution of the following harvesting model  

4)5( −−= PP
dt

dP
 

P(o)=Po 

Solution: 4.15 The differential equation can be written as  

)1)(4()452( −−−=+−−= PPPP
dt

dP
 

or dt
PP

dP
−=

−− )1)(4(
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or  dtdP
PP

−=



















−
−

− 1

3

1

4

3

1

 

Integrating we get 

ct
1P

4P
ln

3

1
+−=

−

−
 

or   tec
P

P 3
1

1

4 −=
−

−
 

Setting t=0 and P=P0 we find c1=(Po-4)/(Po-1).  

Solving for P we get  

tePoPo

tePoPo
tP

3)4()1(

3)4()1(4
)(

−−−−

−−−−
=  

4.13 Exercises  

Newton’s Law of Cooling/Warming  

1. A thermometer reading 1000 F is placed in a pan of oil maintained 

at 100 F. What is the temperature of the thermometer when t=20 

sec,  if its temperature is 600 F when t = 8 sec? 

2. A thermometer is removed from a room where the air temperature 

is 600 F and is taken outside, where the temperature is 100 F. After 

1 minute the thermometer reads 500 F. What is the reading of the 

thermometer at t=2 minutes? How long will it take for the 

thermometer to reach 200 F . 

3. Water is heated to a boiling point temperature 1200C. It is then 

removed from the burner and kept in a room of 300C temperature. 
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Assuming that there is no change in the temperature of the room 

and the temperature of the hot water is 110oC after 3 minutes. (a) 

Find the temperature of water after 6 minutes (b) Find the duration 

in which water will cool down to the room temperature?   

Population Growth and decay  

4. A culture initially has Po number of bacteria. At t=1 hour, the 

number of bacteria is measured to be 
2

3
 P0. If the rate of growth is 

proportional to the number of bacteria P(t) present at time t, 

determine the time necessary for the number of bacteria to triple.  

5. Solve the logistic differential equation: 

0N)0(N,0t

,N)
k

N
1(or

dt

dN

=

−=

 

6. Insects in a tank increase at a rate proportional to the number 

present. If the number increases from 50,000 to 100,000 in one 

hour, how many insects are  present at the end of two hours.  

7. It was estimated that the earth’s human population in 1961 was 

3,060,000,000. Assuming the population increases at the rate of 2 

percent, find the earth’s  population in 1996 using model of 

population growth (1.8). Check this number with the actual 

population of the earth available from authentic sources.  
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Radio-Active Decay and Carbon Dating  

8. A breeder reactor converts relatively stable uranium 238 into the 

isotope plutonium 239. After 30 years it is determined  that 0.022% 

of the initial amount N0 of plutonium has disintegrated. Find the 

half-life of this isotope if the rate of disintegration in proportional to 

the amount remaining.  

9. The radioactive isotope of lead, Pb-209, decays at a rate 

proportional to the amount present at time t and has a half-life of 4 

hours. If 1 gram of lead is present initially, how long will it take for 

80% of the lead to decay? 

10. Solve the model obtained in Exercise 32 of chapter 1.  

11. In the 1950 excavation at Nippur, a city of Babylonia, charcoal from 

a roof beam gave a count of 4.09 dis/min/g. Living wood gave 6.68 

disintegrations. Assuming that this charcoal was formed during the 

time of Hammurabi’s reign, find an estimate for the likely time of 

Hammurabi’s  succession.  

Mixture of Two Salt Solutions 

12. A tank with a capacity of 600 litres initially contains 200 litres of 

pure water. A salt solution containing 3 Kg of salt per litre is allowed 

to run into the tank at a rate of 16 lit/min, and the mixture is then 

removed at a rate  of 12 lit/min. Find the expression for the number 

of Kilograms of salt in the tank at any time t.  
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13. A large tank is filled with 600 liters of pure water. Brine containing 2 

Kg of salt per litre is pumped into the tank at a rate of 5 litre/min. 

The well-mixed solution is pumped out at the same rate. Find the 

number P(t) of kilograms of salt in the tank at time t. What is the 

concentration of the solution in the tank at t=10 min? 

14. A 250-litre tank contains 100 litres of pure water. Brine containing 4 

kg of salt per litre flows into the tank at 5 lit/hr. If the well-stirred 

mixture flows out at 3 lit/hr, find the concentration of salt in the tank 

at the instant it is filled to the top.  

Series circuit   

15. A series RL circuit has a resistance 20 ohms, and an inductance  of 

1 henry, and an impressed voltage of 12 volts. Find the current i(t) if 

the initial current is zero.  

16. An electromotive force  

120,        0  t  20 
E(t)= 
 0 , t > 20 
 
is applied to an LR series circuit in which the inductance is 20  

henries and the resistance is 2 ohms. Find the current i(t) if i(0)=0 

Survivability with AIDS 

17. Find survival fraction S(t) with aids after 2 years by applying model 

(1.31). 
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Draining a Tank   

18. A tank in the form of a right-circular cylinder standing on end is 

leaking water through a circular hole in its bottom. Let us assume 

that the height of the tank is 10 ft. high and has radius 2 ft. and 

circular hole has radius ½ inches. If the tank is initially full, how long 

it will take to empty? 

Economics and Finance  

19. What rate of interest payable annually is equivalent to 6% 

continuously compounded? 

20. Suppose a person deposits 10,000 Indian rupees in a bank account 

at the rate of 5% per annum  compounded continuously. How much 

money will be in his bank account 18 months later? How much he 

has in the account if the interest were compounded monthly. 

Drug distribution(Concentration) in Human Body 

21. A drug with k=0.01 is administered every 12 hours in doses of 4 

mg. Calculate the amount of the drug in the patient’s  body after the 

4th dose is taken. 

22. A drug with k=0 .030 is to be administered in doses of y0=4mg, 

gradually building upto a saturation level in the patient of ys=20mg. 

Calculate the dosage time interval. Assume that the time interval is 

in hours.  

Pursuit Problem  

23. Complete the solution of the pursuit problem.  
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24. Solve the pursuit problem if R=3 and D=2. Draw the path pursued  

by the dog.  

Harvesting of Renewable Natural Resources  

25(a)  Solve the initial value problem 

4

25
)5( −−= PP

dt

dP
 

P(0)=P0 

25 (b) Find when the population becomes extinct in the case 0< P0<5/2 

      

 

 


