AIMS

SAMPLE LESSON: MATHEMATICS

Class: Form 4

Title of Module: Plane Geometry
Title of Lesson: Translation

Title of Chapter: simple transformations
Duration of Lesson: 55mins

Name of Authors: Che Emmanuel
GBHS Emana, Yaoundé

```
SCHOOL: AIMS TTP COP
```

```
CLASS: FORM }
```


Term:

Girls:

Date:
DURATION : 55MINS

ENROLMENT: Boys:
MODULE 16: Plane Geometry
TOPIC: SIMPLE TRANSFORMATIONS
LESSON : Translation
Rationale : Every day in real life especially in movements, designing and in decorations, we represent and displace self or shapes to come out with other forms that are more beautiful or that we want. In doing that we are carrying out a simple transformation that is called Translation.

Objectives: At the end of the lesson, students should be able to:

- Define isometric transformations
- Translate plane shapes on the coordinate axes
- Determine the shift vector or matrix operator for a given translation

Prerequisite knowledge: - plotting of points on the coordinate axes,

- identification of congruent figures,
- addition of matrices.

DIDACTIC MATERIALS: Graph board, mathematical instruments and worksheets.
REFERENCE: - August 2014 Mathematics teaching syllabus Form four. Ministry of Secondary Education, Cameroon - Andrew T. Tamabang (2007) form 4 Mastering Mathematics, ($1^{\text {st }}$ edition) Cambridge university press. -website: superteacher.com

AIMS
African Institute for
Mathematical Science Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Stages /Duration	Teaching / learning ACTIVITIES ${ }^{\text {a }}$ ($\begin{aligned} & \text { Teacher's } \\ & \text { Activities }\end{aligned}$	Learner 's Activities	Learning Point	Observation
Introduction (7mins)	A/ - Control of prerequisite knowledge 1.On the Cartesian axes on the graph board, plot the following points : $A(2,2), B(-2,-2), C(3,4), D(3,0), E(0,0)$ 2. What hand -on activity can you carry out to verify if 2 plane figures are congruent? 3. Carry out the following addition of matrices -Designates some students plot the points on the board, then use line segments to connect the points to have ABCD	Respond to the questions asked. Follow up the exercise on the board attentively to confirm the points plotted.	Plotting of points on the coordinate axes Connect points with line segments to form plane figures 2. two figures in the plane are congruent, if you can superpose one figure over the other so that they cover each other exactly. As such they have the same shape and size. 3. i) $\binom{2}{3}+\binom{5}{-3}=\binom{7}{0}$; ii) $\binom{-2}{-2}+\binom{5}{-4}=\binom{3}{-6}$	
	B/- Problem situation You are given the plane figure $A B C D$ on the Cartesian axes on the graph board. 1) how do we move the shape $A B C D$ to a new location, without changing its shape, size and orientation? 2) how do we move a shape from one location to another using a matrix.	Reflect on the problem Situation		

Lesson development (20 mins)	Activity 1 In the worksheet provided the first example has been done for you follow the example and complete the worksheet.	Provides worksheet to each group of 3 students. Paste the cardboard chart on transformation in a visible position in class. Dictates definitions for students to copy.	Read instructions and carry out the activity in groups. Students appreciate the chart and copy the definitions.	A transformation is a general term for specific ways to manipulate the shape of a point, a line or a shape. The original shape of the object is called the pre-image and the final shape and position of the object is the image under transformation. If the pre-image and the image are congruent to each other, then the transformation is called an isometry or rigid transformation. The tree types of Isometric Transformation are: Translation, Reflection and Rotation.	
	Activity 2 1.Draw a vertical and horizontal line to intersect at the middle of your graph paper 2.Taking 1 cm to represent 1 unit on graph paper, label your pair of coordinate axes 3.Plot the points: $\mathrm{A}(2,2) ; \mathrm{B}(4,2)$; $C(4,6)$; $D(2,6)$ and connect them to produce the plane shape $A B C D$.	Puts students in groups of three. moves round to help students -sends students to the board to carry out activity on a graph board.	Students work in groups. Groups compare their answers with other groups.	Answers to 1. 2, 3, 4, 5 and 6	

Scholars Program

	a column matrix $\binom{x}{y}$ called the matrix of translation or shift vector. Hence moving any point on a plane figure by translation, we just add the coordinates of each point separately to the translation matrix $\binom{x}{y}$ Example Given the points $A(2,2), B(3,3), C(4,4)$, and a translation matrix $\binom{2}{4}$,the translated points are then given by : $\begin{aligned} & \mathrm{A}^{\prime}=\binom{2}{4}+\binom{2}{2}=\binom{4}{6} \\ & \mathrm{~B}^{\prime}=\binom{2}{4}+\binom{3}{3}=\binom{5}{7} \\ & \mathrm{C}^{\prime}=\binom{2}{4}+\binom{4}{4}=\binom{6}{8} \end{aligned}$ Hence the translated shape will have cordinates; $A^{\prime}(4,6), B^{\prime}(5,7)$ and $C^{\prime}(6,8)$.			Hence moving any point on a plane figure by translation, we just add the coordinates of each point separately to the translation matrix $\binom{x}{y}$ Translation is an ISOMETRIC Transformation since the shape is preserved, Example Given the points $A(2,2), B(3,3), C(4,4)$, and a translation matrix $\binom{2}{4}$, the translated points are then given by : $\begin{aligned} \mathrm{A}^{\prime} & =\binom{2}{4}+\binom{2}{2}=\binom{4}{6} \\ \mathrm{~B}^{\prime} & =\binom{2}{4}+\binom{3}{3}=\binom{5}{7} \\ \mathrm{C}^{\prime} & =\binom{2}{4}+\binom{4}{4}=\binom{6}{8} \end{aligned}$ Hence the translated shape will have coordinates; $A^{\prime}(4,6), B^{\prime}(5,7)$ and $C^{\prime}(6,8)$.	
Application exercise (10 mins)	1) Given the points $A(-1,1), B(-$ $4,1), C(-4,6)$ and a translation matrix $\binom{2}{2}$,find points A^{\prime}, B^{\prime} ,C^{\prime} after $A B C$ is translated . 2) From the figure a) state the coordinates of $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. b) find the matrix of translation.	Writes the exercise on the board. Move around and direct students with difficulties without solving for them	Solve individually and compare their solutions with peers.	Solution to exercises 1) Points are $A(-1,1), B(-4,1)$ and $C(-4,6)$ Translation Matrix is $\binom{2}{2}$. Therefore $\begin{aligned} & \binom{-1}{1}+\binom{2}{2}=\binom{1}{3} ; \therefore A^{\prime}=(1,3) \\ & \binom{-4}{1}+\binom{2}{2}=\binom{-2}{3} ; \therefore B^{\prime}=(-2,3) \\ & \binom{-4}{6}+\binom{2}{2}=\binom{-2}{8} \therefore C^{\prime}=(-2,8) \end{aligned}$ 2) a) $\mathrm{A}(-5,5) ; \mathrm{B}=(-25) ; \mathrm{c}=(-21) ; \mathrm{D}=(-5,1)$ $A^{\prime}(3,-2) ; B^{\prime}=(6,-2) ; \quad C^{\prime}=(6,-6) ; \quad D^{\prime}=(3,-6)$	

			b) To move from one point to its image requires movement of 8 units to the Right and 7 units Down. The Translation matrix is therefore $\binom{8}{-7}$	
Conclusion (8 mins)	Hame work Ex 20a nos. 1 and 3. Activity (reflection)	Teacher gives reference from textbook.	Students copy	A translation is moving all the points of the image the same distance in the same direction, or in other words, a slide.

Scholars Program

A flip is to turn over or reflect.

A llisle is tor rache con object in any direction without rotating it.

funn

A turn is to rotate around.

Scholars Program

AIMS
**arrpec \qquad
Slides, Flips, and Turns

$\square \square \square$

e.

4. Deam Tre lemtior Noxtiow a Dips.

ba: Cinam trion lation no smome

