SAMPLE LESSON: MATHEMATICS

Class: Upper Sixth Mathematics

[^0]
Module 4 : PLANE GEOMETRY AND SOLID FIGURES

Topic: Complex Numbers
Lesson: Polar form (trigonometric form) and exponential form of a non-zero complex number Objectives: At the end of this lesson, the learners should be able to:

1) Calculate the modulus of a complex number
2) Find Argument of a non-zero complex number;
3) Give the polar form of a non-zero complex number;
4) Give the exponential form of a non-zero complex number.

Key question:

What is the polar form of a non-zero complex number?

Prerequisite knowledge:

$\checkmark \quad$ Verify whether students can calculate the norm of a vector.
\checkmark Verify whether students can determine the measurement of the angle between the positive X -axis and a vector.
Motivation: The study of complex numbers comes to reinforce our knowledge and skills necessary to study plane geometry.
Didactic materials
Chalk, colour chalk, Chalkboard, ruler and set square.

REFERENCES

- EWANE ROLAND ALUNGE. Advanced Level Pure Mathematics Made Easy First Edition.
-Pure Mathematics With Mechanics Teaching Syllabuses (January 2020)

Scholars Program

AIMS
African Institute for
Mathematical Science
NEXT EINSTEIN INITIATIVE

Stages / Duration	Teaching /Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observations
Introduction (5mins)	Verification of Pre-requisites Exercise a) Calculate the norm of $\overrightarrow{O A}\binom{0}{4}$ given in the Cartesian plane. b) Determine the measure of the angle between \vec{l} and $\overrightarrow{O A}$.	-Copies questions on the board -Calls students to the board	-Solve on the board as called by the teacher	Verification of Pre-requisites Exercise a) Calculate the norm of $\overrightarrow{O A}\binom{0}{4}$ given in the Cartesian plane. b) Determine the measure of the angle between \vec{i} and $\overrightarrow{O A}$.	
Lesson Development and Summary (100mins)	Activity In an orthonormal reference system ($\mathrm{O}, \vec{\imath}, \vec{j}$), we consider the points A, B and C with respective affixes $z_{A}=2, z_{B}=3 i$ and $z_{C}=2+2 i$ 1) Plot the points A, B and C in this reference system. 2) Calculate the values of $O A, O B$ and $O C$. 3) Determine the measure of the following angles: a) The angle between $\vec{\imath}$ and $\overrightarrow{O A}$. b) The angle between $\vec{\imath}$ and $\overrightarrow{O B}$. c) The angle between $\vec{\imath}$ and $\overrightarrow{O C}$.	-Copies activity on the chalkboard -Instructs students to copy in their notebooks and allows them 10 minutes to research	-Follow the instruction s and carry out the activity while interacting with each other	Activity In an orthonormal reference system ($\mathrm{O}, \vec{\imath}$, $\vec{J})$, we consider the points A, B and C with respective affixes $z_{A}=2, z_{B}=3 i$ and $z_{C}=2+2 i$ 1) Plot the points A, B and C in this reference system. 2) Calculate the values of $O A, O B$ and $O C$. 3) Determine the measure of the following angles: a) The angle between \vec{l} and $\overrightarrow{O A}$. b) The angle between \vec{l} and $\overrightarrow{O B}$. c) The angle between \vec{l} and $\overrightarrow{O C}$.	

Scholars

Stages / Duration	Teaching /Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observations
	Resolution 1) $\begin{aligned} \text { 2) } O A=\sqrt{0^{2}+2^{2}}=2, O B \sqrt{3^{2}+0^{2}}=3 \\ O C=\sqrt{2^{2}+2^{2}}=\sqrt{8} \end{aligned}$ 3)According to the figure above, a)The angle between \vec{l} and $\overrightarrow{O A}$ is $\frac{\pi}{2}$ b) The angle between \vec{l} and $\overrightarrow{O B}$ is 0 c) The angle between \vec{l} and $\overrightarrow{O C}$ is $\frac{\pi}{4}$.	-Copies notes on the board -Explains concepts -Dictates notes	-Copy notes in their books Copy notes in their notebooks	Resolution 1) $\begin{aligned} & \text { 2) } O A=\sqrt{0^{2}+2^{2}}=2, O B \sqrt{3^{2}+0^{2}}=3 \\ & O C=\sqrt{2^{2}+2^{2}}=\sqrt{8} \end{aligned}$ 3)According to the figure above, a)The angle between \vec{l} and $\overrightarrow{O A}$ is $\frac{\pi}{2}$ b)The angle between $\vec{\imath}$ and $\overrightarrow{O B}$ is 0 c) The angle between \vec{l} and $\overrightarrow{O C}$ is $\frac{\pi}{4}$.	

Scholars
Program
AIMS
African Institute for
Mathematical Scienc
Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Stages / Duration	Teaching /Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observations
	$\rightarrow) \sqrt{8}$ Is called modulus of the complex number $z=2+2 i$. $\rightarrow)(\vec{i} ; \overrightarrow{O C})=\frac{\pi}{4}$ will be called argument of the complex number $z=2+2 i$. Definition (modulus) Let $z=a+b i$ be a complex number, We call the modulus of z the strictly positive real number denoted by $\|z\|$ and define by $\|z\|=\sqrt{a^{2}+b^{2}}$ Example Calculate the modulus of the complex number $z=2+3 i$ Resolution $\|z\|=\sqrt{2^{2}+3^{2}}=\sqrt{13}$ Properties Let z and z^{\prime} two complex numbers $\rightarrow)\|z\|=0$ if and only if $z=0$. $\begin{aligned} & \rightarrow)\left\|z \times z^{\prime}\right\|=\|z\| \times\left\|z^{\prime}\right\| \\ & \rightarrow)\left\|z^{n}\right\|=\|z\|^{n} \forall n \in \mathbb{N} \\ & \rightarrow)\|\bar{z}\|=\|z\| \\ & \rightarrow)\left\|\frac{z}{z \prime}\right\|=\frac{\|z\|}{\|z \prime\|} \forall z^{\prime} \in \mathbb{C}^{*} \end{aligned}$ Remark For any $M(z)$ and $M^{\prime}\left(z^{\prime}\right)$ $M M^{\prime}=\left\|Z_{M^{\prime}}-Z_{M}\right\|$ Definition (argument)	Solves the examples one after the other while questioning the students	as the teacher explains, asking and answering questions where necessary	$\rightarrow) \sqrt{8}$ Is called modulus of the complex number $z=2+2 i$. $\rightarrow)(\vec{i} ; \overrightarrow{O C})=\frac{\pi}{4}$ will be called argument of the complex number $z=2+2 i$. Definition (modulus) Let $z=a+b i$ be a complex number, We call the modulus of z the strictly positive real number denoted by $\|z\|$ and define by $\|z\|=\sqrt{a^{2}+b^{2}}$ Example Calculate the modulus of the complex number $z=2+3 i$ Resolution $\|z\|=\sqrt{2^{2}+3^{2}}=\sqrt{13}$ Properties Let z and z^{\prime} two complex numbers $\begin{aligned} & \rightarrow)\|z\|=0 \text { if and only if } z=0 . \\ & \rightarrow\left\|\left\|z \times z^{\prime}\right\|=\|z\| \times\left\|z^{\prime}\right\|\right. \\ & \rightarrow)\left\|z^{n}\right\|=\|z\|^{n} \forall n \in \mathbb{N} \\ & \rightarrow)\|\bar{z}\|=\|z\| \\ & \rightarrow\left\|\frac{z}{z}\right\|=\frac{\|z\|}{\|z \prime\|} \forall z^{\prime} \in \mathbb{C}^{*} \end{aligned}$ Remark For any $M(z)$ and $M^{\prime}\left(z^{\prime}\right)$ $M M^{\prime}=\left\|Z_{M^{\prime}}-Z_{M}\right\|$ Definition (argument)	

Stages / Duration	Teaching /Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observations
	Let z be a non-zero complex number, M the image of the complex number z, in the complex plane with an orthonormal reference system ($0, \vec{l}, \vec{j}$), -We call Argument of z the angle $(\vec{l} ; \overrightarrow{O M}) \text { denoted } \operatorname{Arg}(z)$ - We call argument of z the measure of angle $(\vec{l} ; \overrightarrow{O M}) \text { denoted } \arg (z)$ $\begin{aligned} & \operatorname{Arg}(z)=(\vec{l} ; \overrightarrow{\overrightarrow{O M}}) \\ & \arg (\mathbf{z})=\operatorname{mes}(\vec{\imath} ; \overrightarrow{O M}) \end{aligned}$ Example $\begin{aligned} & \overline{\operatorname{Arg}(2+2 i)}=\left(\frac{\widehat{\pi}}{4}\right) \\ & \arg (2+2 i)=\frac{\pi}{4} \end{aligned}$ Remark If the affix of the vector \vec{u} is $Z_{\vec{u}}$, then $\arg \left(z_{\vec{u}}\right)=\operatorname{mes}(\overrightarrow{\vec{l} ; \vec{u})}$ Polar form of a non-zero complex number Let $z=a+i b$ be a non-zero complex number			Let z be a non-zero complex number, M the image of the complex number z, in the complex plane with an orthonormal reference system ($0, \vec{l}, \vec{j}$), -We call Argument of z the angle $(\vec{l} ; \overrightarrow{O M}) \text { denoted } \operatorname{Arg}(\mathbf{z})$ - We call argument of z the measure of angle $\begin{aligned} & (\overrightarrow{\vec{l} ; \overrightarrow{O M}) \text { denoted } \arg (z)} \\ & \operatorname{Arg}(\mathbf{z})=(\overrightarrow{\vec{l} ; \overrightarrow{O M}}) \\ & \arg (\mathbf{z})=\operatorname{mes}(\overrightarrow{(\vec{l} ; \overrightarrow{O M}}) \end{aligned}$ Example $\begin{aligned} & \operatorname{Arg}(2+2 i)=\left(\frac{\widehat{\pi}}{4}\right) \\ & \arg (2+2 i)=\frac{\pi}{4} \end{aligned}$ Remark If the affix of the vector \vec{u} is $Z_{\vec{u}}$, then $\arg \left(z_{\vec{u}}\right)=\operatorname{mes}(\overrightarrow{(\vec{l} ; \vec{u})}$ Polar form of a non-zero complex number Let $z=a+i b$ be a non-zero complex number	

African Institute for
Mathematical Scien
Mathematical sciences
NEXT EINSTEIN INITIATIVE

Stages / Duration	Teaching /Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observations
	And M the image of z in an Argand Diagram. We suppose that $\arg (z)=\alpha,\|z\|=r$ $\begin{aligned} & \operatorname{Cos} \alpha=\frac{a}{r} \\ & \sin \alpha=\frac{b}{r} \rightarrow \mathrm{a}=\mathrm{r} \operatorname{Cos} \alpha \\ & \rightarrow \mathrm{~b}=\mathrm{r} \sin \alpha \end{aligned}$ $z=r \operatorname{Cos} \alpha+i r \sin \alpha=r(\operatorname{Cos} \alpha+i \sin \alpha)$ $\boldsymbol{z}=\boldsymbol{r}(\boldsymbol{\operatorname { C o s }} \alpha+\boldsymbol{i} \boldsymbol{\operatorname { S i n }} \alpha)$ is called the polar			And M the image of z in an Argand Diagram. We suppose that $\arg (z)=\alpha,\|z\|=r$ $\begin{aligned} & \operatorname{Cos} \alpha=\frac{a}{r} \rightarrow \mathrm{a}=\mathrm{r} \operatorname{Cos} \alpha \\ & \sin \alpha=\frac{b}{r} \rightarrow \mathrm{~b}=\mathrm{r} \sin \alpha \end{aligned}$ $z=r \operatorname{Cos} \alpha+i r \sin \alpha=r(\operatorname{Cos} \alpha+i \sin \alpha)$ $\boldsymbol{z}=\boldsymbol{r}(\boldsymbol{\operatorname { C o s }} \alpha+\boldsymbol{i} \boldsymbol{\operatorname { S i n }} \alpha)$ is called the polar (trigonometric) form of the complex number Z.	

Stages / Duration	Teaching /Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observations
	(trigonometric) form of the complex number z. This polar form can also be written as follow $Z=[r ; \alpha]$ Exponential form of a non-zero complex number let $Z=[r ; \alpha]$ be a complex number, the exponential form of z is $z=r \boldsymbol{e}^{i \alpha}$ Remark If $z=a+i b$, then $\|z\|=\sqrt{a^{2}+b^{2}}$ $z=\sqrt{a^{2}+b^{2}}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}+i \frac{b}{\sqrt{a^{2}+b^{2}}}\right)$ By definition $\cos \alpha=\frac{a}{\sqrt{a^{2}+b^{2}}} \text { and } \sin \alpha=\frac{b}{\sqrt{a^{2}+b^{2}}}$ example: give the polar and exponential form of the following complex numbers: $z_{1}=1+i \sqrt{3} \text { and } z_{2}=1+i$ Resolution $\begin{aligned} & \left\|z_{1}\right\|=2 \\ & z_{1}=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \end{aligned}$ $\operatorname{Cos} \alpha=\frac{1}{2}$ and $\sin \alpha=\frac{\sqrt{3}}{2}$ implies that $\alpha=\frac{\pi}{3}$ Then the polar form of			This polar form can also be written as follow $\boldsymbol{Z}=[\boldsymbol{r} ; \boldsymbol{\alpha}]$ Exponential form of a non-zero complex number let $Z=[r ; \alpha]$ be a complex number, the exponential form of z is $z=\boldsymbol{r} \boldsymbol{e}^{i \alpha}$ Remark $\begin{aligned} & \text { If } z=a+i b \text {, then } \\ & \|z\|=\sqrt{a^{2}+b^{2}} \\ & \quad z=\sqrt{a^{2}+b^{2}}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}+i \frac{b}{\sqrt{a^{2}+b^{2}}}\right) \end{aligned}$ By definition $\cos \alpha=\frac{a}{\sqrt{a^{2}+b^{2}}} \text { and } \sin \alpha=\frac{b}{\sqrt{a^{2}+b^{2}}}$ example: give the polar and exponential form of the following complex numbers: $z_{1}=1+i \sqrt{3} \text { and } z_{2}=1+i$ Resolution $\begin{aligned} & \left\|z_{1}\right\|=2 \\ & z_{1}=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \end{aligned}$ $\cos \alpha=\frac{1}{2}$ and $\sin \alpha=\frac{\sqrt{3}}{2}$ implies that $\alpha=\frac{\pi}{3}$ Then the polar form of	

Stages / Duration	Teaching /Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observations
	$z_{1}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\left[2 ; \frac{\pi}{3}\right]$ its exponential form is $Z_{1}=2 e^{i \frac{\pi}{3}}$ $\left\|z_{2}\right\|=\sqrt{2} ; z_{2}=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)$ $\operatorname{Cos} \alpha=\frac{\sqrt{2}}{2}$ and $\sin \alpha=\frac{\sqrt{2}}{2}$ implies that $\alpha=\frac{\pi}{4}$ Then the polar form of $z_{2}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\left[\sqrt{2} ; \frac{\pi}{4}\right]$ its exponential form is $Z_{2}=\sqrt{2} e^{i \frac{\pi}{4}}$ Properties Let $Z=[r ; \alpha]=r e^{i \alpha}$ and $z^{\prime}=\left[r^{\prime} ; \alpha^{\prime}\right]=r^{\prime} e^{i \alpha \prime}$ be two complex numbers; Remark From the properties we can deduce that:			$z_{1}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\left[2 ; \frac{\pi}{3}\right]$ its exponential form is $Z_{1}=2 e^{i \frac{\pi}{3}}$ $\left\|z_{2}\right\|=\sqrt{2} ; z_{2}=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)$ $\operatorname{Cos} \alpha=\frac{\sqrt{2}}{2}$ and $\sin \alpha=\frac{\sqrt{2}}{2}$ implies that $\alpha=\frac{\pi}{4}$ Then the polar form of $z_{2}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\left[\sqrt{2} ; \frac{\pi}{4}\right]$ its exponential form is $Z_{2}=\sqrt{2} e^{i \frac{\pi}{4}}$ Properties Let $Z=[r ; \alpha]=r e^{i \alpha}$ and $z^{\prime}=\left[r^{\prime} ; \alpha^{\prime}\right]=r^{\prime} e^{i \alpha \prime}$ be two complex numbers; Remark From the properties we can deduce that :	

Scholars Program

African Institute for
Mathematical Scienc Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Stages / Duration	Teaching /Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observations
	$\begin{aligned} & \arg \left(z z^{\prime}\right)=\arg (z)+\arg \left(z^{\prime}\right) \\ & \arg \left(\frac{z}{z r}\right)=\arg (z)-\arg \left(z^{\prime}\right) \end{aligned}$			$\begin{aligned} & \arg \left(z z^{\prime}\right)=\arg (z)+\arg \left(z^{\prime}\right) \\ & \arg \left(\frac{z}{z \prime}\right)=\arg (z)-\arg \left(z^{\prime}\right) \end{aligned}$	
Exercises of Application (10mins)	Exercise 1)Determine the loci of points $M(z)$ such that $\begin{aligned} & \|z-1+i\|=\|1+3 i\| \\ & \|z+2-3 i\|=\|z+1+i\| \end{aligned}$ 2) Given that $z_{1}=\frac{\sqrt{6}-i \sqrt{2}}{2}$ and $z_{2}=1-i$ a) Determine the modulus and argument of z_{1} and z_{2} b) Give the algebraic , polar and exponential form of the quotient $\frac{z_{1}}{z_{2}}$ c) Deduce the values of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$.	Dictates the exercise	Take down the exercise and do it	Exercise 1)Determine the loci of points $M(z)$ such that $\begin{aligned} & \|z-1+i\|=\|1+3 i\| \\ & \|z+2-3 i\|=\|z+1+i\| \end{aligned}$ 2) Given that $z_{1}=\frac{\sqrt{6}-i \sqrt{2}}{2}$ and $z_{2}=1-i$ a)Determine the modulus and argument of z_{1} and z_{2} b) Give the algebraic ,polar and exponential form of the quotient $\frac{z_{1}}{z_{2}}$ c) Deduce the values of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$.	
Conclusion (5mins)	Bilingual game Give the equivalence of the following words in French: modulus; argument; polar form. Home work Announcement of the next lesson. The next lesson will be on the square root of a complex number and solutions of quadratic equations.	Copies questions on the board	Copy questions in their note books	Bilingual game Give the equivalence of the following words in French: modulus; argument; polar form. Home work Announcement of the next lesson. The next lesson will be on the square root of a complex number and solutions of quadratic equations	

[^0]: Module: Plane Geometry and Solid Figures

 Title of Lesson: Polar form (trigonometric form) and exponential form of a

 TOPIC: Complex Numbers

 Duration of Lesson: 120mins non-zero complex number

 Name of Authors: Inspectorate of Pedagogy/Sciences for the Far North Region

