

SAMPLE LESSON: MATHEMATICS

Class: Upper Sixth/ Further Mathematics

Module: Geometry II	TOPIC: Complex Numbers
Title of Lesson: Polar form (trigonometric form), exponential form of a non-zero complex number and Euler's formula	Duration of Lesson: 120mins

Name of Authors: Inspectorate of Pedagogy/Sciences for the Far North Region

Module 4 : GEOMETRY II

Topic: Complex Numbers

Lesson: Polar form (trigonometric form), exponential form of a non-zero complex number and Euler's formula

Objectives: At the end of this lesson, the learners should be able to:

- 1) Calculate the modulus of a complex number
- 2) Find Argument of a non-zero complex number;
- 3) Give the polar form of a non-zero complex number;
- 4) Give the exponential form of a non-zero complex number.
- 5) Use Euler's formula in some operations.

Key question:

What is the polar form of a non-zero complex number?

Prerequisite knowledge:

- \checkmark Verify whether students can calculate the norm of a vector.
- ✓ Verify whether students can determine the measurement of the angle between the positive X-axis and a vector.

Motivation: The study of complex numbers comes to reinforce our knowledge and skills necessary to study plane geometry.

Didactic materials

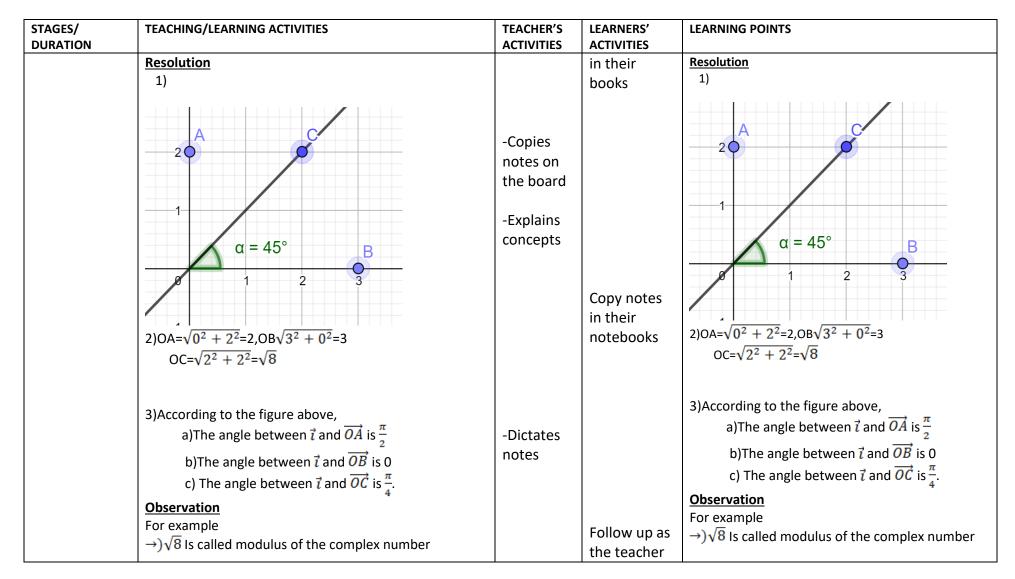
Chalk, colour chalk, Chalkboard, ruler and set square.

REFERENCES

- EWANE ROLAND ALUNGE. Further Pure Mathematics Made Easy Third Edition.

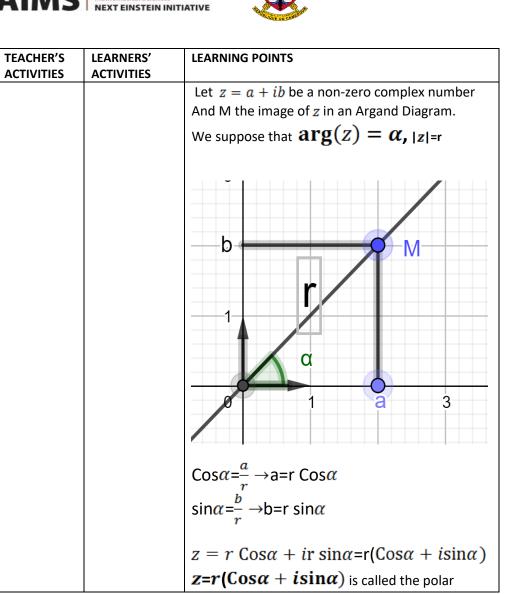
-Further Mathematics Teaching Syllabuses (January 2020)

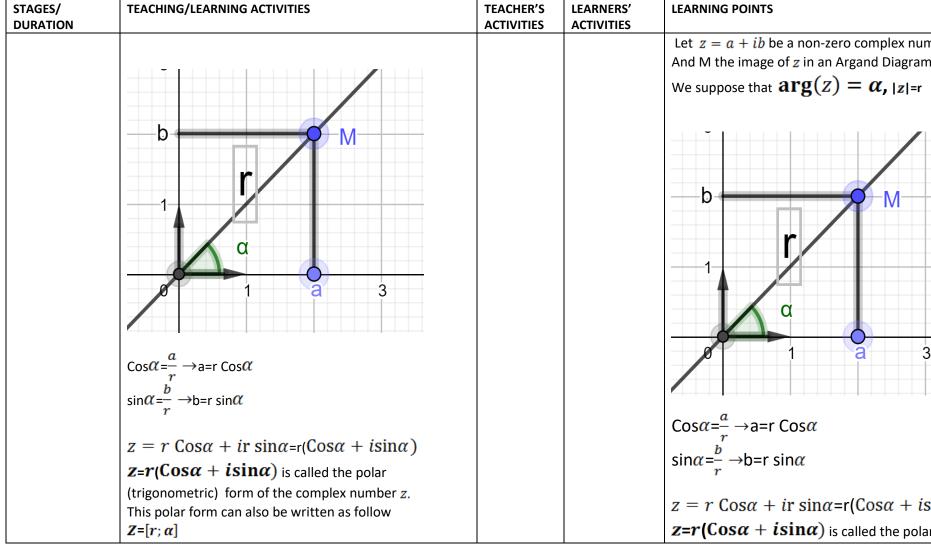
STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
INTRODUCTIO	Verification of Pre-requisites	-Copies	-Solve on the	Verification of Pre-requisites
Ν	Exercise	questions	board as	Exercise
5mins	a) Calculate the norm of $\overrightarrow{OA}\begin{pmatrix}0\\4\end{pmatrix}$ given in the Cartesian plane.	on the board	called by the teacher	a) Calculate the norm of $\overrightarrow{OA} \begin{pmatrix} 0\\4 \end{pmatrix}$ given in the Cartesian plane.
	b) Determine the measure of the angle between $\vec{\iota}$ and \vec{OA} .	-Calls students to the board		b) Determine the measure of the angle between \vec{i} and \vec{OA}
Lesson Development and Summary (100mins)	<u>Activity</u> In an orthonormal reference system $(0, \vec{i}, \vec{j})$, we consider the points A,B and C with respective affixes $z_A = 2, z_B = 3i$ and $z_C = 2 + 2i$ 1) Plot the points A, B and C in this reference system. 2) Calculate the values of OA,OB and OC. 3) Determine the measure of the following angles: a) The angle between \vec{i} and \vec{OA} . b) The angle between \vec{i} and \vec{OB} . c) The angle between \vec{i} and \vec{OC} .	-Copies activity on the chalkboard -Instructs students to copy in their notebooks and allows them 10 minutes to research	-Follow the instructions and carry out the activity while interacting with each other	Activity In an orthonormal reference system (O, \vec{i} , \vec{j}), we consider the points A, B and C with respective affixes $z_A = 2$, $z_B = 3i$ and $z_C = 2 + 2i$ 1) Plot the points A, B and C in this reference system. 2) Calculate the values of OA,OB and OC. 3) Determine the measure of the following angles: a) The angle between \vec{i} and \overrightarrow{OA} . b) The angle between \vec{i} and \overrightarrow{OB} . c) The angle between \vec{i} and \overrightarrow{OC} .
			-Copy notes	



STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	z = 2 + 2i.		explains,	z = 2 + 2i.
	\rightarrow) (\vec{i} ; \overrightarrow{OC}) = $\frac{\pi}{4}$ will be called argument of the complex		asking and	\rightarrow) (\vec{i} ; \overrightarrow{OC}) = $\frac{\pi}{4}$ will be called argument of the
	number $z = 2 + 2i$.		answering	complex number $z = 2 + 2i$.
	Definition (modulus)		questions	<u>Definition (</u> modulus)
	Let $z = a + bi$ be a complex number,		where	Let $z = a + bi$ be a complex number,
	We call the modulus of z the strictly positive real		necessary	We call the modulus of <i>z</i> the strictly positive real
	number denoted by $ z $ and define by	Solves the		number denoted by $ z $ and define by
	$ z = \sqrt{a^2 + b^2}$	examples		$ z = \sqrt{a^2 + b^2}$
	Example_	one after		Example_
	Calculate the modulus of the complex number	the other		Calculate the modulus of the complex number
	z = 2 + 3i	while		z = 2 + 3i
	$\underline{\text{Resolution}} z = \sqrt{2^2 + 3^2} = \sqrt{13}$	questionin		$\underline{\text{Resolution}} z = \sqrt{2^2 + 3^2} = \sqrt{13}$
	<u>Properties</u>	g the		<u>Properties</u>
	Let z and z' two complex numbers	students		Let z and z' two complex numbers
	\rightarrow) z =0 if and only if $z = 0$.			\rightarrow) z =0 if and only if $z = 0$.
	$\rightarrow) z \times z' = z \times z' $			$\rightarrow) z \times z' = z \times z' $
	$\rightarrow) z^n = z ^n \forall n \in \mathbb{N}$			$\rightarrow) z^n = z ^n \ \forall n \in \mathbb{N}$
	\rightarrow) \bar{z} = z			\rightarrow) \bar{z} = z
	$ \rightarrow) \left \frac{z}{z_{l}} \right = \frac{ z }{ z_{l} } \forall z' \in \mathbb{C}^{*} $			\rightarrow) $\left \frac{z}{z'}\right = \frac{ z }{ z' } \forall z' \in \mathbb{C}^*$
	$ \rightarrow) z + z' \leq z + z' $			$\rightarrow) z+z' \le z + z' $
	$\rightarrow) z+z' \geq z - z' $			$\rightarrow) z+z' \ge z - z' $
	Remark			<u>Remark</u>
	For any $M(z)$ and $M'(z')$			For any $M(z)$ and $M'(z')$
	$ MM' = Z_{M'} - Z_M $			$MM' = Z_{M'} - Z_M $
	Definition (argument)			<u>Definition (</u> argument)

STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	Let z be a non-zero complex number,			Let z be a non-zero complex number,
	M the image of the complex number z , in the complex			M the image of the complex number z , in the
	plane with an orthonormal reference system (O, \vec{i} , \vec{j}),			complex plane with an orthonormal reference
	-We call Argument of <i>z</i> the angle			system (O, \vec{l} , \vec{j}),
	$(\overline{\overline{z}, \overline{0M}})$			-We call Argument of <i>z</i> the angle
	$\left(\vec{l}; \overrightarrow{OM}\right)$ denoted $Arg(z)$			$\left(\widehat{ec{l}; OM} ight)$ denoted $Arg(z)$
	- We call argument of <i>z</i> the measure of angle			
	$(\overrightarrow{t}, \overrightarrow{OM})$			- We call argument of <i>z</i> the measure of angle
	$\left(\vec{l}; \overrightarrow{OM}\right)$ denoted $arg(z)$			$\left(ec{\iota}; \overrightarrow{OM} ight)$ denoted $arg(z)$
	$\operatorname{Arg}(\mathbf{z}) = (\widehat{\mathbf{l}; OM})$			
				$\operatorname{Arg}(z) = (\widetilde{l}; \widetilde{OM})$
	$\arg(z) = \max(\vec{i}; \overrightarrow{OM})$			
	Example			$\arg(z) = \max(\vec{i}; \vec{OM})$
	$\operatorname{Arg}(2+2i) = \left(\overline{\frac{\pi}{4}}\right)$			Example
	$\arg(2+2i)=\frac{\pi}{4}$			$\operatorname{Arg}(2+2i) = \left(\frac{\pi}{4}\right)$
				$arg(2+2i) = \frac{\pi^{4}}{2}$
	<u>Remark</u>			
	If the affix of the vector $ec{u}$ is $z_{ec{u}}$,then			Remark
	$\arg(z_{\vec{u}}) = \max(\widehat{(\vec{\iota};\vec{u})})$			If the affix of the vector $ec{u}$ is $z_{ec{u}}$,then
	Polar form of a non-zero complex number			$\arg(z_{\vec{u}}) = \max(\widehat{\vec{i};\vec{u}})$
	Let $z = a + ib$ be a non-zero complex number			
	And M the image of z in an Argand Diagram.			Polar form of a non-zero complex
	We suppose that $rg(z)=lpha$, $ z $ =r			<u>number</u>





STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
DORATION	Exponential form of a non-zero complex number	ACTIVITES	ACTIVITIES	(trigonometric) form of the complex number z.
	let $Z=[r; \alpha]$ be a complex number,			This polar form can also be written as follow
	the exponential form of z is $z = re^{i\alpha}$			$Z=[r; \alpha]$
	Remark			Exponential form of a non-zero
	If $z = a + ib$, then			<u>complex number</u>
	$ z =\sqrt{a^2+b^2}$			let $Z=[r; \alpha]$ be a complex number,
	$\int \frac{1}{a} \left(a + b \right)$			the exponential form of z is $z = re^{i\alpha}$
	$z = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} + i \frac{b}{\sqrt{a^2 + b^2}} \right)$			Remark
	By definition			If $z = a + ib$, then
	$Cos\alpha = \frac{a}{\sqrt{a^2 + b^2}}$ and $sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$			$ z = \sqrt{a^2 + b^2}$
	example : $\sqrt{a^2+b^2}$ $\sqrt{a^2+b^2}$			$z = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} + i \frac{b}{\sqrt{a^2 + b^2}} \right)$
	give the polar and exponential form of the following			By definition $\sqrt{a^2 + b^2} = \sqrt{a^2 + b^2}$
	complex numbers:			$Cos\alpha = \frac{a}{\sqrt{a^2 + b^2}}$ and $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$
	$z_1 = 1 + i\sqrt{3}$ and $z_2 = 1 + i$			va-+b- va-+b-
	Resolution			example :
	$ z_1 = 2$			give the polar and exponential form of the following complex numbers:
	_			$z_1 = 1 + i\sqrt{3}$ and $z_2 = 1 + i$
	$z_1 = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$			$\frac{2}{1} = 1 + i \sqrt{5} \tan 2_2 = 1 + i$ Resolution
	$Cos\alpha = \frac{1}{2}$ and $sin \alpha = \frac{\sqrt{3}}{2}$ implies that $\alpha = \frac{\pi}{3}$			$ z_1 = 2$
	$LOS\alpha = -\frac{1}{2}$ and $Sin \alpha = -\frac{1}{2}$ implies that $\alpha = -\frac{1}{3}$			$2\left(1+\sqrt{3}\right)$
	Then the polar form of			$z_1 = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$
	$z_1 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = \left[2; \frac{\pi}{3}\right]$			$Cos\alpha = \frac{1}{2}$ and $sin \alpha = \frac{\sqrt{3}}{2}$ implies that $\alpha = \frac{\pi}{3}$
	its exponential form is $Z_1 = 2e^{i\frac{\pi}{3}}$			Then the polar form of
				$z_1 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = \left[2; \frac{\pi}{3}\right]_{\pi}$
	$ z_2 = \sqrt{2}; z_2 = \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right)$			its exponential form is $Z_1 = 2e^{i\frac{\pi}{3}}$

STAGES/ DURATION	TEACHING/LEARNING AC	TIVITIES		TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS		
	$Cos\alpha = \frac{\sqrt{2}}{2}$ and $sin \alpha =$	$=\frac{\sqrt{2}}{2}$ implies that $\alpha = \frac{\pi}{4}$				$ z_2 = \sqrt{2}; z_2 = \sqrt{2} \left(\frac{1}{\sqrt{2}}\right)$		
	Then the polar form of π					$Cos\alpha = \frac{\sqrt{2}}{2}$ and $sin \alpha =$	$=\frac{\sqrt{2}}{2}$ implies that $\alpha = \frac{\pi}{4}$	
	$z_2 = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin n \right)$	- 				Then the polar form of		
	its exponential form is	$Z_2 = \sqrt{2}e^{l\frac{2}{4}}$				$z_2 = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \left[\sqrt{2}; \frac{\pi}{4}\right]$		
	Properties Let $Z=[r; \alpha] = re^{i\alpha}$ an	d $z' = [r' \cdot \alpha'] = r' e^{i\alpha'}$				its exponential form is	- TT	
	be two complex numb					Properties	2	
	Polar form	Exponential form				Let $Z=[r;\alpha] = re^{i\alpha}$ and	d $z'=[r'; \alpha'] = r'e^{i\alpha'}$	
	$\bar{z} = [r; -\alpha]$	$\bar{z} = re^{-i\alpha}$				be two complex numb	ers;	
	$-z=[r;-\alpha]$	$-z = re^{i(\alpha + \pi)}$				Polar form	Exponential form	
	$z \times z' = [rr'; \alpha + \alpha']$	$z \times z' = rr' e^{i(\alpha + \alpha')}$				$\bar{z} = [r; -\alpha]$	$\bar{z} = re^{-i\alpha}$	
	$\frac{1}{z} = \left[\frac{1}{r}; -\alpha\right]$	$\frac{1}{\pi} = \frac{1}{\pi} e^{-i\alpha}$				$\frac{-z=[r;-\alpha]}{z \times z'=[rr';\alpha+\alpha']}$	$-z = re^{i(\alpha+\pi)}$ $z \times z' = rr'e^{i(\alpha+\alpha')}$	
	$\frac{z}{z'} = \left[\frac{r}{r'}; \alpha - \alpha'\right]$	$\frac{z}{z'} = \frac{r}{r'} e^{i(\alpha - \alpha')}$				1 ε1 τ	$\frac{1}{\pi} = \frac{1}{\pi} e^{-i\alpha}$	
	Remark		1			$\frac{1}{z} = \frac{1}{r}; -\alpha$	$\begin{bmatrix} Z & T \\ Z & T \end{bmatrix}_{i(\alpha - \alpha i)}$	
	From the properties we	e can deduce that :				$\boxed{\frac{z}{z'} = \left[\frac{r}{r'}; \alpha - \alpha'\right]}$	$\frac{z}{z'} = \frac{r}{r'} e^{i(\alpha - \alpha')}$	
	arg(zz') = arg(z) + az(z)	arg(z')				Remark		
	$arg(\frac{z}{z}) = arg(z) - arg$	z(z')				From the properties we	e can deduce that :	
	Euler's formula					arg(zz') = arg(z) + az(z) +		
	$cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ and					$arg(\frac{z}{z'}) = arg(z) - arg$	(z')	
						Euler's formula		
	$sin heta=rac{e^{i heta}-e^{-i heta}}{2i}$ for an	y real number θ .				$cos\theta = rac{e^{i\theta} + e^{-i\theta}}{2}$ and		

STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
				$sin heta = rac{e^{i heta} - e^{-i heta}}{2i}$ for any real number $ heta$.
Exercises of				
Application	<u>Exercise</u>			Exercise
(10mins)	1)Determine and represent the loci of points $M(z)$ such that: z - 1 + i = 1 + 3i z + 2 - i = z + i z + 2 - 3i = 2 z + 1 + i $\arg(z - 1 + i) = \frac{\pi}{4}$ 2)Given that $z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2}$ and $z_2 = 1 - i$ a)Determine the modulus and argument of z_1 and z_2 b) Give the algebraic ,polar and exponential form of the quotient $\frac{z_1}{z_2}$ c) Deduce the values of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$. 3)Use Euler's formula to express $\cos^4 x$ in terms of $\cos 4x$ and $\cos x$ and deduce the value of the integral	Dictates the exercise	Take down the exercise and do it	1)Determine and represent the loci of points M(z) such that: z - 1 + i = 1 + 3i z + 2 - i = z + i z + 2 - 3i = 2 z + 1 + i $\arg(z - 1 + i) = \frac{\pi}{4}$ 2)Given that $z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2}$ and $z_2 = 1 - i$ a)Determine the modulus and argument of z_1 and z_2 b) Give the algebraic ,polar and exponential form of the quotient $\frac{z_1}{z_2}$ c) Deduce the values of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$. 3)Use Euler's formula to express $\cos^4 x$ in terms
	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\cos^4 x dx$			of cos4x and cosx and deduce the value of the integral $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^4 x dx$
Conclusion (5mins)	Bilingual game Give the equivalence of the following words in French: modulus; argument; polar form; Euler formula. Home work	Copies questions on the	Copy questions in their note	Bilingual game Give the equivalence of the following words in French: modulus; argument; polar form;Euler
		board	books	formula.

STAGES/	TEACHING/LEARNING ACTIVITIES	TEACHER'S	LEARNERS'	LEARNING POINTS
DURATION		ACTIVITIES	ACTIVITIES	
	Announcement of the next lesson. The next lesson will be on the nth-root of a complex number and their representation on the Argand diagram and solutions of quadratic equations.			Home work Announcement of the next lesson. The next lesson will be on the nth-root of a complex number and their representation on the Argand diagram and solutions of quadratic equations.