AIMS

SAMPLE LESSON: MATHEMATICS

Class: Upper Sixth/ Further Mathematics

Module: Geometry II

Title of Lesson: Polar form (trigonometric form), exponential form of a
non-zero complex number and Euler's formula

TOPIC: Complex Numbers

Duration of Lesson: 120mins NEXT EINSTEIN INITIATIVE

Module 4 : GEOMETRY II

Topic: Complex Numbers
Lesson: Polar form (trigonometric form), exponential form of a non-zero complex number and Euler's formula Objectives: At the end of this lesson, the learners should be able to:

1) Calculate the modulus of a complex number
2) Find Argument of a non-zero complex number;
3) Give the polar form of a non-zero complex number;
4) Give the exponential form of a non-zero complex number.
5) Use Euler's formula in some operations.

Key question:

What is the polar form of a non-zero complex number?

Prerequisite knowledge:

\checkmark Verify whether students can calculate the norm of a vector.
\checkmark Verify whether students can determine the measurement of the angle between the positive X-axis and a vector.
Motivation: The study of complex numbers comes to reinforce our knowledge and skills necessary to study plane geometry.

Didactic materials

Chalk, colour chalk, Chalkboard, ruler and set square.
REFERENCES

- EWANE ROLAND ALUNGE. Further Pure Mathematics Made Easy Third Edition.
-Further Mathematics Teaching Syllabuses (January 2020)

Scholars Program

STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
INTRODUCTIO N 5mins	Verification of Pre-requisites Exercise a) Calculate the norm of $\overrightarrow{O A}\binom{0}{4}$ given in the Cartesian plane. b) Determine the measure of the angle between \vec{l} and $\overrightarrow{O A}$.	-Copies questions on the board -Calls students to the board	-Solve on the board as called by the teacher	Verification of Pre-requisites Exercise a) Calculate the norm of $\overrightarrow{O A}\binom{0}{4}$ given in the Cartesian plane. b) Determine the measure of the angle between \vec{t} and $\overrightarrow{O A}$
Lesson Development and Summary (100mins)	Activity In an orthonormal reference system ($0, \vec{l}, \vec{j}$), we consider the points A, B and C with respective affixes $z_{A}=2, z_{B}=3 i$ and $z_{C}=2+2 i$ 1) Plot the points A, B and C in this reference system. 2) Calculate the values of $O A, O B$ and $O C$. 3) Determine the measure of the following angles: a) The angle between \vec{l} and $\overrightarrow{O A}$. b) The angle between \vec{l} and $\overrightarrow{O B}$. c) The angle between \vec{l} and $\overrightarrow{O C}$.	-Copies activity on the chalkboard -Instructs students to copy in their notebooks and allows them 10 minutes to research	-Follow the instructions and carry out the activity while interacting with each other	Activity In an orthonormal reference system (O, \vec{l}, $\vec{j})$, we consider the points A, B and C with respective affixes $z_{A}=2, z_{B}=3 i$ and $z_{C}=2+2 i$ 1) Plot the points A, B and C in this reference system. 2) Calculate the values of $O A, O B$ and $O C$. 3) Determine the measure of the following angles: a) The angle between \vec{l} and $\overrightarrow{O A}$. b) The angle between $\vec{\imath}$ and $\overrightarrow{O B}$. c) The angle between \vec{l} and $\overrightarrow{O C}$.

Scholars Program

Scholars Program

African Institute for
Mathematical Sciences NEXT EINSTEIN INITIATIV

STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER’S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	$z=2+2 i .$ $\rightarrow)(\vec{l} ; \overrightarrow{O C})=\frac{\pi}{4}$ will be called argument of the complex number $z=2+2 i$. Definition (modulus) Let $z=a+b i$ be a complex number, We call the modulus of z the strictly positive real number denoted by $\|z\|$ and define by $\|z\|=\sqrt{a^{2}+b^{2}}$ Example Calculate the modulus of the complex number $z=2+3 i$ Resolution $\|z\|=\sqrt{2^{2}+3^{2}}=\sqrt{13}$ Properties Let z and z^{\prime} two complex numbers $\rightarrow)\|z\|=0$ if and only if $z=0$. $\rightarrow)\left\|z \times z^{\prime}\right\|=\|z\| \times\left\|z^{\prime}\right\|$ $\rightarrow)\left\|z^{n}\right\|=\|z\|^{n} \forall n \in \mathbb{N}$ $\rightarrow)\|\bar{z}\|=\|z\|$ $\rightarrow)\left\|\frac{z}{z \prime}\right\|=\frac{\|z\|}{\|z\| \mid} \forall z^{\prime} \in \mathbb{C}^{*}$ $\rightarrow)\left\|z+z^{\prime}\right\| \leq\|z\|+\left\|z^{\prime}\right\|$ $\rightarrow)\left\|z+z^{\prime}\right\| \geq\left\|\|z\|-\left\|z^{\prime}\right\|\right\|$ Remark For any $M(z)$ and $M^{\prime}\left(z^{\prime}\right)$ $\boldsymbol{M} \boldsymbol{M}^{\prime}=\left\|Z_{M^{\prime}}-Z_{M}\right\|$ Definition (argument)	Solves the examples one after the other while questionin g the students	explains, asking and answering questions where necessary	$z=2+2 i$. $\rightarrow)(\vec{\imath} ; \overrightarrow{O C})=\frac{\pi}{4}$ will be called argument of the complex number $z=2+2 i$. Definition (modulus) Let $z=a+b i$ be a complex number, We call the modulus of z the strictly positive real number denoted by $\|z\|$ and define by $\|z\|=\sqrt{a^{2}+b^{2}}$ Example Calculate the modulus of the complex number $z=2+3 i$ Resolution $\|z\|=\sqrt{2^{2}+3^{2}}=\sqrt{13}$ Properties Let z and z^{\prime} two complex numbers $\rightarrow)\|z\|=0$ if and only if $z=0$. $\rightarrow)\left\|z \times z^{\prime}\right\|=\|z\| \times\left\|z^{\prime}\right\|$ $\rightarrow)\left\|z^{n}\right\|=\|z\|^{n} \forall n \in \mathbb{N}$ $\rightarrow)\|\bar{z}\|=\|z\|$ $\rightarrow)\left\|\frac{z}{z r}\right\|=\frac{\|z\|}{\|z r\|} \forall z^{\prime} \in \mathbb{C}^{*}$ $\rightarrow)\left\|z+z^{\prime}\right\| \leq\|z\|+\left\|z^{\prime}\right\|$ $\rightarrow)\left\|z+z^{\prime}\right\| \geq\left\|\|z\|-\left\|z^{\prime}\right\|\right\|$ Remark For any $M(z)$ and $M^{\prime}\left(z^{\prime}\right)$ $\boldsymbol{M} \boldsymbol{M}^{\prime}=\left\|Z_{M^{\prime}}-Z_{M}\right\|$ Definition (argument)

Scholars Program NEXT EINSTEIN INITIATIVE

STAGES/ duration	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	Let z be a non-zero complex number, M the image of the complex number z, in the complex plane with an orthonormal reference system ($0, \vec{\imath}, \vec{\jmath}$), -We call Argument of z the angle $(\overrightarrow{\vec{l} ; \overrightarrow{O M}}) \text { denoted } \operatorname{Arg}(z)$ - We call argument of z the measure of angle $(\vec{l} ; \overrightarrow{O M}) \text { denoted } \arg (\mathrm{z})$ $\boldsymbol{\operatorname { A r g }}(\mathbf{z})=(\overrightarrow{\vec{l} ; \overrightarrow{O M}})$ $\arg (z)=\operatorname{mes}(\widehat{\vec{l} ; \widehat{O M}})$ Example $\begin{aligned} & \operatorname{Arg}(2+2 i)=\left(\frac{\pi}{4}\right) \\ & \arg (2+2 i)=\frac{\pi}{4} \end{aligned}$ Remark If the affix of the vector \vec{u} is $Z_{\vec{u}}$, then $\arg \left(z_{\vec{u}}\right)=\operatorname{mes}(\overrightarrow{\vec{l} ; \vec{u})}$ Polar form of a non-zero complex number Let $z=a+i b$ be a non-zero complex number And M the image of z in an Argand Diagram. We suppose that $\arg (z)=\alpha,\|z\|=r$			Let z be a non-zero complex number, M the image of the complex number z, in the complex plane with an orthonormal reference system ($0, \vec{i}, \vec{j}$), -We call Argument of Z the angle $(\overrightarrow{\vec{l}} ; \overrightarrow{O M}) \text { denoted } \operatorname{Arg}(\mathrm{z})$ - We call argument of Z the measure of angle $(\overrightarrow{\vec{l}} ; \overrightarrow{O M})$ denoted $\arg (z)$ $\begin{aligned} & \operatorname{Arg}(\mathbf{z})=(\overrightarrow{\vec{l} ; \overrightarrow{O M}}) \\ & \arg (\mathbf{z})=\boldsymbol{\operatorname { m e s } (\vec { l } ; \vec { O M }}) \end{aligned}$ Example $\begin{aligned} & \operatorname{Arg}(2+2 i)=\widehat{\left(\frac{\pi}{4}\right)} \\ & \arg (2+2 i)=\frac{\pi}{4} \end{aligned}$ Remark If the affix of the vector \vec{u} is $Z_{\vec{u}}$, then $\arg \left(z_{\vec{u}}\right)=\operatorname{mes}(\overrightarrow{\vec{l} ; \vec{u})}$ Polar form of a non-zero complex number

Scholars Program

STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	 $\operatorname{Cos} \alpha=\frac{a}{r} \rightarrow \mathrm{a}=\mathrm{r} \operatorname{Cos} \alpha$ $\sin \alpha=\frac{b}{r} \rightarrow \mathrm{~b}=\mathrm{r} \sin \alpha$ $z=r \operatorname{Cos} \alpha+i r \sin \alpha=r(\operatorname{Cos} \alpha+i \sin \alpha)$ $\boldsymbol{z}=\boldsymbol{r}(\boldsymbol{\operatorname { C o s }} \boldsymbol{\alpha}+\boldsymbol{i} \boldsymbol{\operatorname { S i n }} \boldsymbol{\alpha})$ is called the polar (trigonometric) form of the complex number z. This polar form can also be written as follow $Z=[r ; \alpha]$			Let $z=a+i b$ be a non-zero complex number And M the image of z in an Argand Diagram. We suppose that $\arg (z)=\alpha,\|z\|=r$ $\begin{aligned} & \operatorname{Cos} \alpha=\frac{a}{r} \rightarrow \mathrm{a}=\mathrm{r} \operatorname{Cos} \alpha \\ & \sin \alpha=\frac{b}{r} \rightarrow \mathrm{~b}=\mathrm{r} \sin \alpha \end{aligned}$ $\begin{aligned} & z=r \operatorname{Cos} \alpha+i \boldsymbol{r} \sin \alpha=r(\operatorname{Cos} \alpha+i \sin \alpha) \\ & \mathbf{z}=\boldsymbol{r}(\boldsymbol{\operatorname { C o s } \alpha} \alpha+\boldsymbol{i} \operatorname{Sin} \alpha) \text { is called the polar } \end{aligned}$

Scholars

STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	Exponential form of a non-zero complex number let $Z=[r ; \alpha]$ be a complex number, the exponential form of z is $z=r \boldsymbol{e}^{i \alpha}$ Remark If $z=a+i b$, then $\begin{aligned} & \|z\|=\sqrt{a^{2}+b^{2}} \\ & \quad z=\sqrt{a^{2}+b^{2}}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}+i \frac{b}{\sqrt{a^{2}+b^{2}}}\right) \end{aligned}$ By definition $\operatorname{Cos} \alpha=\frac{a}{\sqrt{a^{2}+b^{2}}} \text { and } \sin \alpha=\frac{b}{\sqrt{a^{2}+b^{2}}}$ example: give the polar and exponential form of the following complex numbers: $z_{1}=1+i \sqrt{3} \text { and } z_{2}=1+i$ Resolution $\begin{aligned} & \left\|z_{1}\right\|=2 \\ & z_{1}=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \end{aligned}$ $\operatorname{Cos} \alpha=\frac{1}{2}$ and $\sin \alpha=\frac{\sqrt{3}}{2}$ implies that $\alpha=\frac{\pi}{3}$ Then the polar form of $z_{1}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\left[2 ; \frac{\pi}{3}\right]$ its exponential form is $Z_{1}=2 e^{i \frac{\pi}{3}}$ $\left\|z_{2}\right\|=\sqrt{2} ; z_{2}=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)$			(trigonometric) form of the complex number z. This polar form can also be written as follow $\boldsymbol{Z}=[\boldsymbol{r} ; \boldsymbol{\alpha}]$ Exponential form of a non-zero complex number let $Z=[r ; \alpha]$ be a complex number, the exponential form of Z is $Z=\boldsymbol{r} \boldsymbol{e}^{i \boldsymbol{\alpha}}$ Remark If $z=a+i b$, then $\|z\|=\sqrt{a^{2}+b^{2}}$ $z=\sqrt{a^{2}+b^{2}}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}+i \frac{b}{\sqrt{a^{2}+b^{2}}}\right)$ By definition $\operatorname{Cos} \alpha=\frac{a}{\sqrt{a^{2}+b^{2}}} \text { and } \sin \alpha=\frac{b}{\sqrt{a^{2}+b^{2}}}$ example: give the polar and exponential form of the following complex numbers: $z_{1}=1+i \sqrt{3} \text { and } z_{2}=1+i$ Resolution $\begin{aligned} & \left\|z_{1}\right\|=2 \\ & z_{1}=2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \end{aligned}$ $\operatorname{Cos} \alpha=\frac{1}{2}$ and $\sin \alpha=\frac{\sqrt{3}}{2}$ implies that $\alpha=\frac{\pi}{3}$ Then the polar form of $z_{1}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\left[2 ; \frac{\pi}{3}\right]$ its exponential form is $Z_{1}=2 e^{i \frac{\pi}{3}}$

STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	$\operatorname{Cos} \alpha=\frac{\sqrt{2}}{2}$ and $\sin \alpha=\frac{\sqrt{2}}{2}$ implies that $\alpha=\frac{\pi}{4}$ Then the polar form of $z_{2}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\left[\sqrt{2} ; \frac{\pi}{4}\right]$ its exponential form is $Z_{2}=\sqrt{2} e^{i \frac{\pi}{4}}$ Properties Let $Z=[r ; \alpha]=r e^{i \alpha}$ and $z^{\prime}=\left[r^{\prime} ; \alpha^{\prime}\right]=r^{\prime} e^{i \alpha \prime}$ be two complex numbers; Remark From the properties we can deduce that: $\arg \left(z z^{\prime}\right)=\arg (z)+\arg \left(z^{\prime}\right)$ $\arg \left(\frac{z}{z I}\right)=\arg (z)-\arg \left(z^{\prime}\right)$ Euler's formula $\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\frac{e^{i \theta}+e^{-i \theta}}{2}$ and $\boldsymbol{\operatorname { s i n }} \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$ for any real number θ.			$\left\|z_{2}\right\|=\sqrt{2} ; z_{2}=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)$ $\cos \alpha=\frac{\sqrt{2}}{2}$ and $\sin \alpha=\frac{\sqrt{2}}{2}$ implies that $\alpha=\frac{\pi}{4}$ Then the polar form of $z_{2}=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\left[\sqrt{2} ; \frac{\pi}{4}\right]$ its exponential form is $Z_{2}=\sqrt{2} e^{i \frac{\pi}{4}}$ Properties Let $Z=[r ; \alpha]=r e^{i \alpha}$ and $z^{\prime}=\left[r^{\prime} ; \alpha^{\prime}\right]=r^{\prime} e^{i \alpha \prime}$ be two complex numbers; Remark From the properties we can deduce that: $\arg \left(z z^{\prime}\right)=\arg (z)+\arg \left(z^{\prime}\right)$ $\arg \left(\frac{z}{z r}\right)=\arg (z)-\arg \left(z^{\prime}\right)$ Euler's formula $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \text { and }$

Scholars Program

STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
				$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$ for any real number θ.
Exercises of Application (10mins)	Exercise 1)Determine and represent the loci of points $M(z)$ such that: $\begin{aligned} & \|z-1+i\|=\|1+3 i\| \\ & \|z+2-i\|=\|z+i\| \\ & \|\mathbf{z}+\mathbf{2}-\mathbf{3 i}\|=\mathbf{2}\|\mathbf{z}+\mathbf{1}+\boldsymbol{i}\| \\ & \arg (\mathbf{z}-\mathbf{1}+\boldsymbol{i})=\frac{\pi}{4} \end{aligned}$ 2) Given that $z_{1}=\frac{\sqrt{6}-i \sqrt{2}}{2}$ and $z_{2}=1-i$ a)Determine the modulus and argument of z_{1} and z_{2} b) Give the algebraic ,polar and exponential form of the quotient $\frac{z_{1}}{z_{2}}$ c) Deduce the values of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$. 3)Use Euler's formula to express $\cos ^{4} x$ in terms of $\cos 4 x$ and $\cos x$ and deduce the value of the integral $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{4} x d x$	Dictates the exercise	Take down the exercise and do it	Exercise 1)Determine and represent the loci of points $M(z)$ such that: $\begin{aligned} & \|z-1+i\|=\|1+3 i\| \\ & \|z+2-i\|=\|z+i\| \\ & \|z+2-3 i\|=2\|z+1+i\| \\ & \arg (z-1+i)=\frac{\pi}{4} \end{aligned}$ 2) Given that $z_{1}=\frac{\sqrt{6}-i \sqrt{2}}{2}$ and $z_{2}=1-i$ a)Determine the modulus and argument of z_{1} and z_{2} b) Give the algebraic , polar and exponential form of the quotient $\frac{z_{1}}{z_{2}}$ c) Deduce the values of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$. 3)Use Euler's formula to express $\cos ^{4} x$ in terms of $\cos 4 x$ and $\cos x$ and deduce the value of the integral $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{4} x d x$
Conclusion (5mins)	Bilingual game Give the equivalence of the following words in French: modulus; argument; polar form; Euler formula. Home work	Copies questions on the board	Copy questions in their note books	Bilingual game Give the equivalence of the following words in French: modulus; argument; polar form;Euler formula.

AIMS
African Institute for
Mathematical Scien NEXT EINSTEIN INITIATIV

STAGES/ DURATION	TEACHING/LEARNING ACTIVITIES	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	Announcement of the next lesson. The next lesson will be on the nth-root of a complex number and their representation on the Argand diagram and solutions of quadratic equations.		Home work	

