SAMPLE LESSON: MATHEMATICS

Class: Form 5

Additional Mathematics Form 5
TOPIC: PERMUTATIONS and COMBINATIONS
Duration of Lesson: 50mins

Name of Authors: Fombin Sebastian, Nfor Samuel, Agwo Johnson Mbakwa, Etta Frida \& Tabod Robert

Scholars Program

AIMS
African Institute for
Mathematical Sciences NEXT EINSTEIN INITIATIVE

STAGE/ DURATION	CONTENT	TEACHER'S ACTIVITY	STUDENT ACTIVITY	LEARNING POINT	OBSERVATION
(Activity 2)	In how many possible ways can the first, second and third prizes be awarded in a competition comprising 7 competitors? Generally, the number of ways of arranging r items at a time from a set of n items is represented by ${ }^{n} P_{r}$ ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$ Now evaluate ${ }^{9} P_{5},{ }^{12} P_{7},{ }^{3} P_{3}$ and ${ }^{4} P_{0}$	and demonstrates the solution using boxes $1^{\text {st }}$ prize $=7$ possible ways $2^{\text {nd }}$ prize $=6$ possible ways $3^{\text {rd }}$ prize $=5$ possible ways Total $=7 \times 6 \times 5$ $\begin{aligned} & =\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}=\frac{7!}{4!} \\ & =\frac{7!}{(7-3)!}={ }^{7} P_{3} \end{aligned}$ Teacher copies problems on the board. Goes around to evaluate students' work.	determine number of possible ways in each box with teacher Students copy, discuss and solve	Facts, procedure and manipulation s	Gives students time to copy and solve
CONCLUSION 5 Mins	Recall the number of ways of arranging n items in a line is given by n ! The number of arranging robjects from a set of n objects is given by ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$	Teacher help students recapitulate knowledge learned	Students answer to teacher's questions to recapitulate facts.		Recapitulation of knowledge
Home work	Exercise: 1) Determine how many different numbers can be obtained from the digits $2,3,5,7$ given that no digit is repeated. 2) A test paper has 9 questions for students to answer any 6 only. In how many different ways can the answers be arranged?	Questions are copied on the board.	Students copy questions and discuss solutions		Reinforcement and consolidation of knowledge

1 A \rightarrow African Institute for
African Institute for
Mathematical Sciences NEXT EINSTEIN INITIATIVE

Worksheet for Activity 1

Instructions

You are each going to produce as many different flags as possible as in the problem situation.

1. Make sure your group is having paper strips and color pencils (Green, Yellow and Red).
2. Make sure each strip of paper given to your group is divided into 3 regions.
3. The end of the strip with a mark is the flag pole
4. Start colouring with the region near the flag pole
5. Shade one region on the paper strip with one colour only
6. The 3 regions must be shaded by 3 different colours.
