

SAMPLE LESSON: MATHEMATICS

Class: Upper Sixth/ Further Mathematics

Module: Geometry II

TOPIC: Complex Numbers

Title of Lesson: nth root of a non-zero complex number and their representations on the complex plane, quadratic equation and De Moivre's Theorem.

Duration of Lesson: 120mins

Name of Authors: Inspectorate of Pedagogy/Sciences for the Far North Region

Module 4 : GEOMETRY II

Topic: Complex Numbers

Lesson: nth root of a non-zero complex number and their representation on the complex plane, quadratic equation and De Moivre's

Theorem.

Objectives: At the end of this lesson, the learners should be able to:

- 1) Determine the algebraic form of the square root of a non-zero complex number ;
- 2) Find the nth root of a non-zero complex number and represent the images of affixes.
- 3) Find solutions of a quadratic equation in C and also find the roots of polynomial equations with real coefficients;
- 4) Use De Moivre's Theorem to express
 - i) $sinn\theta, cosn\theta$ and $tann\theta$ in terms of powers of $sin\theta, cos\theta$ and $tan\theta$
 - ii) Power of sine or cosine of angles in terms of sine and cosine of multiple angles.

Key question:

How can we solve a polynomial equation in $\mathbb C$?

Prerequisite knowledge:

- ✓ Verify whether students can calculate the modulus of a complex number.
- ✓ Verify whether students can solve simultaneous linear equations.

Motivation: The study of complex numbers comes to reinforce our knowledge and skills necessary to study plane geometry.

Didactic materials

Chalk ,colour chalk, Chalkboard,ruler and set square.

REFERENCES

- EWANE ROLAND ALUNGE. Further Mathematics Made Easy Third Edition.

-Further Mathematics Teaching Syllabuses(January 2020)

STAGES/	TEACHING/LEARNING activities	TEACHER'S	LEARNERS'	LEARNING POINTS
DURATION		ACTIVITIES	ACTIVITIES	
Introduction	Verification of Pre-requisites	-Copies	-Solve on	Verification of Pre-requisites
5mins	Exercise	questions on	the board ,	Exercise
	a) Calculate the modulus of the complex number	the board	while the	a) Calculate the modulus of the complex number
	z = 4 - 7i	-Calls students	others	z = 4 - 7i
	b) Solve the simultaneous linear equation: $\begin{cases} x + 2y = 2 \\ x - 2y = -4 \end{cases}$	to the board	follow up	b) Solve the simultaneous linear equation: $\begin{cases} x + 2y = 2 \\ x - 2y = -4 \end{cases}$
Lesson	Activity 1			Activity 1
Development	Given a complex number $z = 3 - 4i$	-Copies	-Follow the	Given a complex number $z = 3 - 4i$
and Summary	1)Calculate $(-2 + i)^2$.what can we say about z and	activity on the	instruction	1)Calculate $(-2 + i)^2$.what can we say about z and
(100mins)	b = -2 + i	chalkboard	s and carry	b = -2 + i
(100111113)	2)Let $\delta = x + iy$ such that $\delta^2 = z$.	-Instructs	out the	2)Let $\delta = x + iy$ such that $\delta^2 = z$.
	a)What can we say about δ and z	students to	activity	a)What can we say about δ and z
	b)Give a relationship between $ \delta^2 $ and $ z $	copy in their	while	b)Give a relationship between $\left \delta^2\right $ and $\left z\right $
	c) Using the previous information find the values (x_1, y_1)	notebooks	interacting	c) Using the previous information find the values (x_1, y_1)
	and (x_2, y_2) of (x, y) .	them 10	other	and (x_2, y_2) of (x, y) .
	d) Consider $\delta_1 = x_1 + iy_1$ and $\delta_2 = x_2 + iy_2$	minutes to	ounci	d) Consider $\delta_1 = x_1 + iy_1$ and $\delta_2 = x_2 + iy_2$
	Calculate δ_1^2 , δ_2^2 and conclude.	research		Calculate δ_1^2 , δ_2^2 and conclude.
	Resolution			Resolution
	1)we easily verify that $(-2+i)^2 = 3-4i$,			1)we easily verify that $(-2+i)^2 = 3-4i$,
	We can say that b is a square root of z .			We can say that b is a square root of z .
	2)a) We can say that δ is a square root of $z.$			2)a) We can say that δ is a square root of z .
	b) The relationship between $ \delta^2 $ and $ z $			b) The relationship between $ \delta^2 $ and $ z $
	is $ \delta^2 = z $ because $\delta^2 = z$.		-Copy	is $ \delta^2 = z $ because $\delta^2 = z$.
	c) Let's find the values (x_1, v_1) and (x_2, v_2) of (x, y) .		notes in	c) Let's find the values (x_1, v_1) and (x_2, v_2) of (x, y) .
	We have	-Copies notes	their books	We have
	$ \delta^2 = z \leftrightarrow x^2 + y^2 = 5$	on the board		$ \delta^2 = z \leftrightarrow x^2 + y^2 = 5$
	$\delta^2 = z \leftrightarrow x^2 - y^2 + i2xy = 3 - 4i$			$\delta^2 = z \leftrightarrow x^2 - y^2 + i2xy = 3 - 4i$
	By identification, $x^2 - y^2 = 3$ and $2xy = -4$	-Explains		By identification, $x^2 - y^2 = 3$ and $2xy = -4$
		concepts		

STAGES/	TEACHING/LEARNING activities	TEACHER'S	LEARNERS'	LEARNING POINTS
DURATION		ACTIVITIES	ACTIVITIES	
	Then, $\begin{cases} 2xy = -4 \text{ is called sign equation} \\ x^2 + y^2 = 5 \\ x^2 - y^2 = 3 \end{cases}$ $\begin{cases} x^2 + y^2 = 5 \\ x^2 - y^2 = 3 \end{cases}$ then $y^2 = 1$ and $y = 1$ or $y = -1$ $x^2 = 4$ and $x = 2$ or $x = -2$ 2xy = -4 implies that x and y should be opposite in sign If $y = 1$ then $x = -2$, $(x_1, y_1) = (-2; 1)$ If $y = -1$ then $x = 2$, $(x_2, y_2) = (2; -1)$ d) $\delta_1 = -2 + i$ and $\delta_2 = 2 - i$ $\delta_1^2 = (-2 + i)^2 = 3 - 4i$, $\delta_2^2 = (2 - i)^2 = 3 - 4i$ Conclusion δ_1 and δ_2 are the square roots of $z = 3 - 4i$	-Dictates notes	Copy notes in their notebooks	Then, $\begin{cases} 2xy = -4 \text{ is called sign equation} \\ x^2 + y^2 = 5 \\ x^2 - y^2 = 3 \end{cases}$ $\begin{cases} x^2 + y^2 = 5 \\ x^2 - y^2 = 3 \end{cases}$ then $y^2 = 1$ and $y = 1$ or $y = -1$ $x^2 = 4$ and $x = 2$ or $x = -2$ 2xy = -4 implies that x and y should be opposite in sign If $y = 1$ then $x = -2$, $(x_1, y_1) = (-2; 1)$ If $y = -1$ then $x = 2$, $(x_2, y_2) = (2; -1)$ d) $\delta_1 = -2 + i$ and $\delta_2 = 2 - i$ $\delta_1^2 = (-2 + i)^2 = 3 - 4i$, $\delta_2^2 = (2 - i)^2 = 3 - 4i$ Conclusion δ_1 and δ_2 are the square roots of $z = 3 - 4i$
	Activity 2 Given the complex number $z=1+i\sqrt{3}$. Give the polar form of z and deduce the Cartesian form of z^3 . Resolution $z=1+i\sqrt{3}=2(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3})=[2;\frac{\pi}{3}]$ $z^3=[2;\frac{\pi}{3}]^3=[2^3;3\times\frac{\pi}{3}]=[8;\pi]=8(\cos\pi+i\sin\pi)=-8$ $z^3=-8$ we say that $1+i\sqrt{3}$ is a cube root of -8 .	Solves the examples one after the other while questioning the students	Follow up as the teacher explains, asking and answering questions where necessary	Activity 2 Given the complex number $z=1+i\sqrt{3}$. Give the polar form of z and deduce the Cartesian form of z^3 . Resolution $z=1+i\sqrt{3}=2(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3})=[2;\frac{\pi}{3}]$ $z^3=[2;\frac{\pi}{3}]^3=[2^3;3\times\frac{\pi}{3}]=[8;\pi]=8(\cos\pi+i\sin\pi)=-8$ $z^3=-8$ we say that $1+i\sqrt{3}$ is a cube root of -8 .

STAGES/	TEACHING/LEARNING activities	TEACHER'S	LEARNERS'	LEARNING POINTS
DURATION		ACTIVITIES	ACTIVITIES	
	Definition			<u>Definition</u>
	-The n^{th} root of a complex number Z is any complex number			-The n^{th} root of a complex number Z is any complex number
	z such that			z such that
	$\mathbf{z}^n = Z$			$\mathbf{z}^n = Z$
	– The square root of a complex number Z is any complex			– The square root of a complex number Z is any complex
	number z such that			number z such that
	$z^2 = Z$			$z^2 = Z$
	Determination of the n th root in polar form of a complex			Determination of the n th root in polar form of a complex
	<u>number.</u>			<u>number.</u>
	Let $Z=[r; heta]$; $z=[ho;lpha]$ be two complex numbers.			Let $Z = [r; \theta]$; $z = [\rho; \alpha]$ be two complex numbers.
	$\mathbf{z}^n = Z \leftrightarrow [\rho; \alpha]^n = [r; \theta]$			$\mathbf{z}^n = Z \qquad \leftrightarrow [\rho; \alpha]^n = [r; \theta]$
	$\longleftrightarrow [\rho^n; n\alpha] = [r; \theta]$			$\leftrightarrow [\rho^n; n\alpha] = [r; \theta]$
	$\leftrightarrow \begin{cases} \rho^n = r \\ n\alpha = \theta + k2\pi \end{cases}$			$\leftrightarrow \begin{cases} \rho^n = r \\ n\alpha = \theta + k2\pi \end{cases}$
	$\leftrightarrow \begin{cases} \rho = \sqrt[n]{r} \\ \alpha = \frac{\theta}{n} + \frac{2k\pi}{n} \end{cases} k \in \{0; 1n-1\} \end{cases}$			$\leftrightarrow \begin{cases} \rho = \sqrt[n]{r} \\ \alpha = \frac{\theta}{n} + \frac{2k\pi}{n} \end{cases} k \in \{0; 1n-1\} \end{cases}$
	$Z_k = \left[\sqrt[n]{r}; \frac{\theta}{n} + \frac{2k\pi}{n} \right], k \in \{0; 1n - 1\} \text{ are the polar forms}$			$Z_k = \left[\sqrt[n]{r}; \frac{\theta}{n} + \frac{2k\pi}{n}\right], k \in \{0; 1n - 1\}$ are the polar forms
	of $n^{ ext{th}}$ root of the complex number $oldsymbol{Z}$.			of n th root of the complex number $oldsymbol{Z}$.
	NB: The images of $z_k = \left[\sqrt[n]{r}; \frac{\theta}{n} + \frac{2k\pi}{n}\right], k \in \{0; 1n-1\}$			NB :The images of $Z_k = \left[\sqrt[n]{r}; \frac{\theta}{n} + \frac{2k\pi}{n}\right], k \in \{0; 1n-1\}$

STAGES/	TEACHING/LEARNING activities	TEACHER'S	LEARNERS'	LEARNING POINTS
DURATION		ACTIVITIES	ACTIVITIES	
STAGES/ DURATION	TEACHING/LEARNING activities Are situated on the circle of center O with radius $\sqrt[n]{r}$. These images are the vertices of an n-sided regular polygon. <u>Definition</u> A quadratic equation in C, is an equation of the form $az^2 + bz + c = 0$ where a, b and c are elements of C and $a \neq 0$ <u>Example</u> $(2+i) z^2 + iz + 1 + i = 0$ <u>Procedure of resolution of the quadratic equation</u> . \rightarrow)Calculate the discriminant $\Delta = b^2 + 4ac$; \rightarrow)Find the algebraic form of the square roots δ_1 and δ_2 of Δ ; \rightarrow)The solution of our equation will be $z_1 = \frac{-b + \delta_1}{2a}$ and $z_2 = \frac{-b + \delta_2}{2a}$ <u>S</u> = $\{\frac{-b + \delta_1}{2a}; \frac{-b + \delta_2}{2a}\}$ <u>Remark</u> $\delta_1 = -\delta_2$ <u>Definition</u> A polynomial equation of degree 3 in C, is an equation of the form $az^3 + bz^2 + cz + d = 0$ where a, b, c and d are elements of C and $a \neq 0$ <u>Example</u> $-5 z^3 + 4z^2 - \frac{2}{3}z - 3 = 0$ <u>De Moivre's Theorem</u> $\forall n \in \sqrt{2}(care 0 + icin(n))^n$	TEACHER'S ACTIVITIES	LEARNERS'	LEARNING POINTS Are situated on the circle of center O with radius $\sqrt[n]{r}$. These images are the vertices of an n-sided regular polygon. <u>Definition</u> A quadratic equation in C, is an equation of the form $az^2 + bz + c = 0$ where a, b and c are elements of C and $a \neq 0$ <u>Example</u> $(2+i) z^2 + iz + 1 + i = 0$ <u>Procedure of resolution of the quadratic equation</u> . \rightarrow)Calculate the discriminant $\Delta = b^2 + 4ac$; \rightarrow)Find the algebraic form of the square roots δ_1 and δ_2 of Δ ; \rightarrow)The solution of our equation will be $z_1 = \frac{-b + \delta_1}{2a}$ and $z_2 = \frac{-b + \delta_2}{2a}$ <u>S</u> = $\left\{ \frac{-b + \delta_1}{2a}; \frac{-b + \delta_2}{2a} \right\}$ <u>Remark</u> $\delta_1 = -\delta_2$ <u>Definition</u> A polynomial equation of degree 3 in C, is an equation of the form $az^3 + bz^2 + cz + d = 0$ where a, b, c and d are elements of C and $a \neq 0$ <u>Example</u> $-5 z^3 + 4z^2 - \frac{2}{3}z - 3 = 0$ <u>De Moivre's Theorem</u> $\forall x \in \sqrt{2}$ (care 0 + initial) h a complet initiated
	$\forall n \in \mathbb{Z}, (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$			$\forall n \in \mathbb{Z}, (\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

STAGES/	TEACHING/LEARNING activities	TEACHER'S	LEARNERS'	LEARNING POINTS
DURATION		ACTIVITIES	ACTIVITIES	
Application	Exercise	Dictates the	Take down	Exercise
Exercises	1) Determine the fifth roots of the complex number z in the	exercise	the	1) Determine the fifth roots of the complex number z in the
	following cases and represent their images on the complex		exercise	following cases and represent their images on the complex
10mins	plane.		and work	plane.
	a) <i>z</i> is unity		individually	a) <i>z</i> is unity
	b) $z = -1 + i\sqrt{3}$			b) $z = -1 + i\sqrt{3}$
	2)Given the following quadratic equation:			2)Given the following quadratic equation:
	$(E): z^{2} + (2+3i)z - 2(1-2i) = 0$			$(E): z^{2} + (2+3i)z - 2(1-2i) = 0$
	a) Calculate the discriminant Δ of the equation.			a) Calculate the discriminant Δ of the equation.
	b) Find the algebraic form of the square roots of Δ .			b) Find the algebraic form of the square roots of Δ .
	c) Deduce the solutions of (E).			c) Deduce the solutions of (E).
	3) consider the polynomial <i>p</i> define by			3) consider the polynomial p define by
	$p(z) = z^3 - 2z^2 - 3z + 10$ for any complex number z.			$p(z) = z^3 - 2z^2 - 3z + 10$ for any complex number z.
	a)verify that -2 is a root of p .			a)verify that -2 is a root of p .
	b)Find the values of a,b and c such that			b)Find the values of a,b and c such that
	$p(z) = (z+2)(az^2+bz+c)$			$p(z) = (z+2)(az^2+bz+c)$
	c)Solve the equation $p(z) = 0$ in \mathbb{C} .			c)Solve the equation $p(z) = 0$ in \mathbb{C} .
	4)a)Using De Moivre's Theorem, show that:			4)a)Using De Moivre's Theorem, show that:
	$\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)^{1999} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$			$\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)^{1999} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$
	b)Expand the expression, $(cosx + isinx)^3$ and express			b)Expand the expression, $(cosx + isinx)^3$ and express
	$cos \ 3x$ and $sin3x$ in terms of $cosx$ and $sinx$.			cos 3x and $sin3x$ in terms of $cosx$ and $sinx$.
CONCLUSION	Bilingual game			Bilingual game
	Give the equivalence of the following words in French: unity;			Give the equivalence of the following words in French: unity;
5 mins	square roots; De Moivre's Theorem.	Copies	Сору	square roots; De Moivre's Theorem.
	Home work	questions on	questions	Home work
		the board	in their	
	Announcement of the next lesson.		note books	Announcement of the next lesson.
	The next lesson will be on complex number and			The next lesson will be on complex number and

STAGES/ DURATION	TEACHING/LEARNING activities	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	plane Transformations			plane Transformations