SAMPLE LESSON: MATHEMATICS

Class: Upper Sixth/ Further Mathematics

Module: Geometry II
Title of Lesson: $\mathrm{n}^{\text {th }}$ root of a non-zero complex number and their representations on the complex plane, quadratic equation and De Moivre's Theorem.

TOPIC: Complex Numbers
Duration of Lesson: 120mins

Name of Authors: Inspectorate of Pedagogy/Sciences for the Far North Region

AIMS
African Institute for
Mathematical Scienc Mathematical sciences
NEXT EINSTEIN INITIATIVE

Module 4 : GEOMETRY II
Topic: Complex Numbers
Lesson: $\mathrm{n}^{\text {th }}$ root of a non-zero complex number and their representation on the complex plane, quadratic equation and De Moivre's
Theorem.
Objectives: At the end of this lesson, the learners should be able to:

1) Determine the algebraic form of the square root of a non-zero complex number ;
2) Find the $\mathrm{n}^{\text {th }}$ root of a non-zero complex number and represent the images of affixes.
3) Find solutions of a quadratic equation in \mathbb{C} and also find the roots of polynomial equations with real coefficients;
4) Use De Moivre's Theorem to express
i) $\sin n \theta, \cos n \theta$ and $\operatorname{tann} \theta$ in terms of powers of $\sin \theta, \cos \theta$ and $\tan \theta$
ii) Power of sine or cosine of angles in terms of sine and cosine of multiple angles.

Key question:

How can we solve a polynomial equation in \mathbb{C} ?
Prerequisite knowledge:
\checkmark Verify whether students can calculate the modulus of a complex number.
\checkmark Verify whether students can solve simultaneous linear equations.
Motivation: The study of complex numbers comes to reinforce our knowledge and skills necessary to study plane geometry.

Didactic materials

Chalk ,colour chalk, Chalkboard,ruler and set square.

REFERENCES

- EWANE ROLAND ALUNGE. Further Mathematics Made Easy Third Edition.
-Further Mathematics Teaching Syllabuses(January 2020)

STAGES/ DURATION	TEACHING/LEARNING activities	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
Introduction 5 mins	Verification of Pre-requisites Exercise a) Calculate the modulus of the complex number $z=4-7 i$ b) Solve the simultaneous linear equation: $\left\{\begin{array}{c}x+2 y=2 \\ x-2 y=-4\end{array}\right.$	-Copies questions on the board -Calls students to the board	-Solve on the board, while the others follow up	Verification of Pre-requisites Exercise a) Calculate the modulus of the complex number $z=4-7 i$ b) Solve the simultaneous linear equation: $\left\{\begin{array}{c}x+2 y=2 \\ x-2 y=-4\end{array}\right.$
Lesson Development and Summary (100mins)	Activity 1 Given a complex number $z=3-4 i$ 1)Calculate $(-2+i)^{2}$. what can we say about z and $b=-2+i$ 2)Let $\delta=x+i y$ such that $\delta^{2}=z$. a)What can we say about δ and z b) Give a relationship between $\left\|\delta^{2}\right\|$ and $\|z\|$ c) Using the previous information, find the values $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of (x, y). d) Consider $\delta_{1}=x_{1}+i y_{1}$ and $\delta_{2}=x_{2}+i y_{2}$ Calculate $\delta_{1}{ }^{2}, \delta_{2}{ }^{2}$ and conclude. Resolution 1) we easily verify that $(-2+i)^{2}=3-4 i$, We can say that b is a square root of z. 2)a) We can say that δ is a square root of z. b) The relationship between $\left\|\delta^{2}\right\|$ and $\|z\|$ is $\left\|\delta^{2}\right\|=\|z\|$ because $\delta^{2}=z$. c) Let's find the values $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) of (x, y). We have $\begin{aligned} \left\|\delta^{2}\right\|=\|z\| \leftrightarrow & x^{2}+y^{2}=5 \\ & \delta^{2}=z \leftrightarrow x^{2}-y^{2}+i 2 x y=3-4 i \end{aligned}$ By identification, $x^{2}-y^{2}=3$ and $2 x y=-4$	-Copies activity on the chalkboard -Instructs students to copy in their notebooks and allows them 10 minutes to research -Copies notes on the board -Explains concepts	-Follow the instruction s and carry out the activity while interacting with each other -Copy notes in their books	Activity 1 Given a complex number $z=3-4 i$ 1)Calculate $(-2+i)^{2}$.what can we say about z and $b=-2+i$ 2)Let $\delta=x+i y$ such that $\delta^{2}=z$. a) What can we say about δ and z b) Give a relationship between $\left\|\delta^{2}\right\|$ and $\|z\|$ c) Using the previous information ,find the values $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of (x, y). d) Consider $\delta_{1}=x_{1}+i y_{1}$ and $\delta_{2}=x_{2}+i y_{2}$ Calculate $\delta_{1}{ }^{2}, \delta_{2}{ }^{2}$ and conclude. Resolution 1)we easily verify that $(-2+i)^{2}=3-4 i$, We can say that b is a square root of z. 2)a) We can say that δ is a square root of z. b) The relationship between $\left\|\delta^{2}\right\|$ and $\|z\|$ is $\left\|\delta^{2}\right\|=\|z\|$ because $\delta^{2}=z$. c) Let's find the values (x_{1}, y_{1}) and (x_{2}, y_{2}) of (x, y). We have $\begin{aligned} \left\|\delta^{2}\right\|=\|z\| \leftrightarrow & x^{2}+y^{2}=5 \\ & \delta^{2}=z \leftrightarrow x^{2}-y^{2}+i 2 x y=3-4 i \end{aligned}$ By identification, $x^{2}-y^{2}=3$ and $2 x y=-4$

STAGES/ DURATION	TEACHING/LEARNING activities	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	Then, $\left\{\begin{array}{c}2 x y=-4 \text { is called sign equation } \\ x^{2}+y^{2}=5 \\ x^{2}-y^{2}=3\end{array}\right.$ $\left\{\begin{array}{l}x^{2}+y^{2}=5 \\ x^{2}-y^{2}=3\end{array}\right.$ then $y^{2}=1$ and $y=1$ or $y=-1$ $x^{2}=4 \text { and } x=2 \text { or } x=-2$ $2 x y=-4$ implies that x and y should be opposite in sign If $y=1$ then $x=-2,\left(x_{1}, y_{1}\right)=(-2 ; 1)$ If $y=-1$ then $x=2,\left(x_{2}, y_{2}\right)=(2 ;-1)$ d) $\delta_{1}=-2+i$ and $\delta_{2}=2-i$ $\begin{aligned} & \delta_{1}^{2}=(-2+i)^{2}=3-4 i \\ & \delta_{2}^{2}=(2-i)^{2}=3-4 i \end{aligned}$ Conclusion δ_{1} and δ_{2} are the square roots of $z=3-4 i$ Activity 2 Given the complex number $z=1+\mathrm{i} \sqrt{3}$. Give the polar form of z and deduce the Cartesian form of Z^{3}. Resolution $\begin{aligned} & z=1+i \sqrt{3}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\left[2 ; \frac{\pi}{3}\right] \\ & z^{3}= \\ & {\left[2 ; \frac{\pi}{3}\right]^{3}=\left[2^{3} ; 3 \times \frac{\pi}{3}\right]=[8 ; \pi]=8(\cos \pi+i \sin \pi)=-8} \end{aligned}$ $z^{3}=-8$ we say that $1+i \sqrt{3}$ is a cube root of -8.	-Dictates notes Solves the examples one after the other while questioning the students	Copy notes in their notebooks Follow up as the teacher explains, asking and answering questions where necessary	Then, $\left\{\begin{array}{c}2 x y=-4 \text { is called sign equation } \\ x^{2}+y^{2}=5 \\ x^{2}-y^{2}=3\end{array}\right.$ $\left\{\begin{array}{l}x^{2}+y^{2}=5 \\ x^{2}-y^{2}=3\end{array}\right.$ then $y^{2}=1$ and $y=1$ or $y=-1$ $x^{2}=4 \text { and } x=2 \text { or } x=-2$ $2 x y=-4$ implies that x and y should be opposite in sign If $y=1$ then $x=-2,\left(x_{1}, y_{1}\right)=(-2 ; 1)$ If $y=-1$ then $x=2,\left(x_{2}, y_{2}\right)=(2 ;-1)$ d) $\delta_{1}=-2+i$ and $\delta_{2}=2-i$ $\begin{aligned} & \delta_{1}^{2}=(-2+i)^{2}=3-4 i \\ & \delta_{2}^{2}=(2-i)^{2}=3-4 i \end{aligned}$ Conclusion δ_{1} and δ_{2} are the square roots of $z=3-4 i$ Activity 2 Given the complex number $z=1+\mathrm{i} \sqrt{3}$. Give the polar form of z and deduce the Cartesian form of z^{3}. Resolution $\begin{aligned} & z=1+i \sqrt{3}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\left[2 ; \frac{\pi}{3}\right] \\ & z^{3}= \\ & {\left[2 ; \frac{\pi}{3}\right]^{3}=\left[2^{3} ; 3 \times \frac{\pi}{3}\right]=[8 ; \pi]=8(\cos \pi+i \sin \pi)=-8} \end{aligned}$ $z^{3}=-8$ we say that $1+i \sqrt{3}$ is a cube root of -8.

STAGES/ DURATION	TEACHING/LEARNING activities	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	Definition -The $\mathrm{n}^{\text {th }}$ root of a complex number Z is any complex number z such that $z^{n}=Z$ - The square root of a complex number Z is any complex number Z such that $z^{2}=Z$ Determination of the $\mathrm{n}^{\text {th }}$ root in polar form of a complex number. Let $Z=[r ; \theta] ; z=[\rho ; \alpha]$ be two complex numbers. of $\mathrm{n}^{\text {th }}$ root of the complex number \boldsymbol{Z}. NB:The images of $Z_{k}=\left[\sqrt[n]{r} ; \frac{\theta}{n}+\frac{2 k \pi}{n}\right], k \in\{0 ; 1 . . n-1\}$			Definition -The $\mathrm{n}^{\text {th }}$ root of a complex number Z is any complex number z such that $z^{n}=Z$ - The square root of a complex number Z is any complex number Z such that $z^{2}=Z$ Determination of the $\mathrm{n}^{\text {th }}$ root in polar form of a complex number. Let $Z=[r ; \theta] ; z=[\rho ; \alpha]$ be two complex numbers. $\left.\left.\left.\begin{array}{rl} z^{n}=Z \quad & \leftrightarrow[\rho ; \alpha]^{n}=[r ; \theta] \\ & \leftrightarrow\left[\rho^{n} ; n \alpha\right]=[r ; \theta] \end{array}\right] \begin{array}{c} \rho^{n}=r \\ n \alpha=\theta+k 2 \pi \end{array}\right] \begin{array}{c} \rho=\sqrt[n]{r} \\ \alpha=\frac{\theta}{n}+\frac{2 k \pi}{n} \quad \boldsymbol{k} \in\{\mathbf{0} ; \mathbf{1} . . \boldsymbol{n}-\mathbf{1}\} \end{array}\right]$ of $\mathrm{n}^{\text {th }}$ root of the complex number \boldsymbol{Z}. NB:The images of $Z_{k}=\left[\sqrt[n]{r} ; \frac{\theta}{n}+\frac{2 k \pi}{n}\right], k \in\{0 ; 1 . . n-1\}$

STAGES/ DURATION	TEACHING/LEARNING activities	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	Are situated on the circle of center O with radius $\sqrt[n]{r}$. These images are the vertices of an n -sided regular polygon. Definition A quadratic equation in \mathbb{C}, is an equation of the form $a z^{2}+b z+c=0$ where a, b and c are elements of \mathbb{C} and $a \neq 0$ Example $(2+\mathrm{i}) z^{2}+i z+1+i=0$ Procedure of resolution of the quadratic equation. \rightarrow Calculate the discriminant $\Delta=b^{2}+4 a c$; \rightarrow)Find the algebraic form of the square roots δ_{1} and δ_{2} of $\Delta ; \rightarrow$ The solution of our equation will be $\begin{aligned} \mathrm{z}_{1}=\frac{-b+\delta_{1}}{2 a} \text { and } \mathrm{z}_{2} & =\frac{-b+\delta_{2}}{2 a} \\ S & =\left\{\frac{-b+\delta_{1}}{2 a} ; \frac{-b+\delta_{2}}{2 a}\right\} \end{aligned}$ Remark $\delta_{1}=-\delta_{2}$ Definition A polynomial equation of degree 3 in \mathbb{C}, is an equation of the form $a z^{3}+b z^{2}+c z+d=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are elements of \mathbb{C} and $a \neq 0$ Example $-5 z^{3}+4 z^{2}-\frac{2}{3} z-3=0$ De Moivre's Theorem $\forall \boldsymbol{n} \in \mathbb{Z},(\cos \theta+i \sin \theta)^{n}=\operatorname{cosn} \theta+i \sin n \theta$			Are situated on the circle of center O with radius $\sqrt[n]{r}$. These images are the vertices of an n-sided regular polygon. Definition A quadratic equation in \mathbb{C}, is an equation of the form $a z^{2}+b z+c=0$ where a, b and c are elements of \mathbb{C} and $a \neq 0$ Example $(2+\mathrm{i}) z^{2}+i z+1+i=0$ Procedure of resolution of the quadratic equation. \rightarrow Calculate the discriminant $\Delta=b^{2}+4 a c$; \rightarrow)Find the algebraic form of the square roots δ_{1} and δ_{2} of $\Delta ; \rightarrow$ The solution of our equation will be $\begin{aligned} \mathrm{z}_{1}=\frac{-b+\delta_{1}}{2 a} \text { and } \mathrm{z}_{2} & =\frac{-b+\delta_{2}}{2 a} \\ S & =\left\{\frac{-b+\delta_{1}}{2 a} ; \frac{-b+\delta_{2}}{2 a}\right\} \end{aligned}$ Remark $\delta_{1}=-\delta_{2}$ Definition A polynomial equation of degree 3 in \mathbb{C},is an equation of the form $a z^{3}+b z^{2}+c z+d=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are elements of \mathbb{C} and $a \neq 0$ Example $-5 z^{3}+4 z^{2}-\frac{2}{3} z-3=0$ De Moivre's Theorem $\forall \boldsymbol{n} \in \mathbb{Z},(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$

Scholars Program

STAGES/ DURATION	TEACHING/LEARNING activities	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
Application Exercises 10mins	Exercise 1) Determine the fifth roots of the complex number z in the following cases and represent their images on the complex plane. a) Z is unity b) $z=-1+i \sqrt{3}$ 2)Given the following quadratic equation: $(E): z^{2}+(2+3 i) z-2(1-2 i)=0$ a) Calculate the discriminant Δ of the equation. b) Find the algebraic form of the square roots of Δ. c) Deduce the solutions of (E). 3) consider the polynomial p define by $p(z)=z^{3}-2 z^{2}-3 z+10$ for any complex number z. a)verify that -2 is a root of p. b)Find the values of a, b and c such that $p(z)=(\mathrm{z}+2)\left(\mathrm{az} z^{2}+\mathrm{bz}+\mathrm{c}\right)$ c)Solve the equation $p(z)=0$ in \mathbb{C}. 4)a)Using De Moivre's Theorem,show that: $\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)^{1999}=\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}$ b)Expand the expression, $(\cos x+i \sin x)^{3}$ and express $\cos 3 x$ and $\sin 3 x$ in terms of $\cos x$ and $\sin x$.	Dictates the exercise	Take down the exercise and work individually	Exercise 1) Determine the fifth roots of the complex number z in the following cases and represent their images on the complex plane. a) Z is unity b) $Z=-1+i \sqrt{3}$ 2)Given the following quadratic equation: $(E): z^{2}+(2+3 i) z-2(1-2 i)=0$ a) Calculate the discriminant Δ of the equation. b) Find the algebraic form of the square roots of Δ. c) Deduce the solutions of (E). 3) consider the polynomial p define by $p(z)=z^{3}-2 z^{2}-3 z+10$ for any complex number z. a) verify that -2 is a root of p. b) Find the values of a, b and c such that $p(z)=(\mathrm{z}+2)\left(\mathrm{az} z^{2}+\mathrm{bz}+\mathrm{c}\right)$ c)Solve the equation $p(z)=0$ in \mathbb{C}. 4)a)Using De Moivre's Theorem,show that: $\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)^{1999}=\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}$ b)Expand the expression, $(\cos x+i \sin x)^{3}$ and express $\cos 3 x$ and $\sin 3 x$ in terms of $\cos x$ and $\sin x$.
CONCLUSION 5 mins	Bilingual game Give the equivalence of the following words in French: unity; square roots; De Moivre's Theorem. Home work Announcement of the next lesson. The next lesson will be on complex number and	Copies questions on the board	Copy questions in their note books	Bilingual game Give the equivalence of the following words in French: unity; square roots; De Moivre's Theorem. Home work Announcement of the next lesson. The next lesson will be on complex number and

NEXT EINSTEIN INITIATIVE

STAGES/ DURATION	TEACHING/LEARNING activities	TEACHER'S ACTIVITIES	LEARNERS' ACTIVITIES	LEARNING POINTS
	plane Transformations			plane Transformations

