AIMS
African Institute for NEXT EINSTEIN INITIATIVE

SAMPLE LESSON: MATHEMATICS

Class: Upper Sixth Mathematics

Module: Plane Geometry and solid Figures
TOPIC: Complex Numbers
Title of Lesson: $\mathrm{n}^{\text {th }}$ root of a non-zero complex number, quadratic
Duration of Lesson: 120mins
equation and De Moivre's Theorem.
Name of Authors: Inspectorate of Pedagogy/Sciences for the Far North Region

Module 4 : PLANE GEOMETRY AND SOLID FIGURES
Topic: Complex Numbers
Lesson: $\mathrm{n}^{\text {th }}$ root of a non-zero complex number, quadratic equation and De Moivre's Theorem.
Objectives: At the end of this lesson, the learners should be able to:

1) Determine the algebraic form of the square root of a non-zero complex number;
2) Find the $\mathrm{n}^{\text {th }}$ root of a non-zero complex number;
3) Find solutions of a quadratic equation in \mathbb{C} and also find the roots of polynomial equations with real coefficients;
4) Use De Moivre's Theorem to express
i) $\sin n \theta, \cos n \theta$ and $\operatorname{tann} \theta$ in terms of powers of $\sin \theta, \cos \theta$ and $\tan \theta$
ii) Power of sine or cosine of angles in terms of sine and cosine of multiple angles.

Key question:

How can we solve a polynomial equation in \mathbb{C} ?
Prerequisite knowledge:
\checkmark Verify whether students can calculate the modulus of a complex number.
\checkmark Verify whether students can solve simultaneous linear equations.
Motivation: The study of complex numbers comes to reinforce our knowledge and skills necessary to study plane geometry.
Didactic materials
Chalk colour chalk, Chalkboard, ruler and set square.

REFERENCES

- EWANE ROLAND ALUNGE. Advanced Level Pure Mathematics Made Easy First Edition.
-Pure Mathematics With Mechanics Teaching Syllabuses(January 2020)

Scholars Program

Stages/Duration	Teaching/Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observations
Introduction (5mins	Verification of Pre-requisites Exercise a) Calculate the modulus of the complex number $z=4-7 i$ b) Solve the simultaneous linear equation: $\left\{\begin{array}{c}x+2 y=2 \\ x-2 y=-4\end{array}\right.$	-Copies questions on the board -Calls students to the board	-Solve on the board as called by the teacher, while the others follow up keenly	Verification of Pre-requisites Exercise a) Calculate the modulus of the complex number $z=4-7 i$ b) Solve the simultaneous linear equation: $\left\{\begin{array}{c}x+2 y=2 \\ x-2 y=-4\end{array}\right.$	
Lesson Development and Summary (100mins)	Activity 1 Given a complex number $z=3-4 i$ 1)Calculate $(-2+i)^{2}$. what can we say about z and $b=-2+i$ 2)Let $\delta=x+i y$ such that $\delta^{2}=z$. a) What can we say about δ and z b) Give a relationship between $\left\|\delta^{2}\right\|$ and $\|z\|$ c) Using the previous information, find the values $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of (x, y). d) Consider $\delta_{1}=x_{1}+i y_{1}$ and $\delta_{2}=x_{2}+i y_{2}$ Calculate $\delta_{1}{ }^{2}, \delta_{2}^{2}$ and conclude. Resolution 1)we easily verify that $(-2+i)^{2}=3-4 i$, We can say that b is a square root of z. 2)a) We can say that δ is a square root of z. b) The relationship between $\left\|\delta^{2}\right\|$ and $\|z\|$ is $\left\|\delta^{2}\right\|=\|z\|$ because $\delta^{2}=z$. c) Let's find the values $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of (x, y). We have	-Copies activity on the chalkboard -Instructs students to copy in their notebooks and allows them 10 minutes to research	-Follow the instructio ns and carry out the activity while interactin g with each other	Activity 1 Given a complex number $z=3-4 i$ 1)Calculate $(-2+i)^{2}$. what can we say about z and $b=-2+i$ 2)Let $\delta=x+i y$ such that $\delta^{2}=z$. a) What can we say about δ and z b) Give a relationship between $\left\|\delta^{2}\right\|$ and $\|z\|$ c) Using the previous information, find the values $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of (x, y). d) Consider $\delta_{1}=x_{1}+i y_{1}$ and $\delta_{2}=x_{2}+i y_{2}$ Calculate $\delta_{1}{ }^{2}, \delta_{2}{ }^{2}$ and conclude. Resolution 1)we easily verify that $(-2+i)^{2}=3-4 i$, We can say that b is a square root of z. 2)a) We can say that δ is a square root of z. b) The relationship between $\left\|\delta^{2}\right\|$ and $\|z\|$ is $\left\|\delta^{2}\right\|=\|z\|$ because $\delta^{2}=z$. c) Let's find the values $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of (x, y). We have	

Scholars Program

AIMS
African Institute for
Mathematical Science Mathematical sciences
NEXT EINSTEIN INITIATIVE

	$\begin{aligned} \left\|\delta^{2}\right\| & =\|z\| \leftrightarrow x^{2}+y^{2}=5 \\ \delta^{2} & =z \leftrightarrow x^{2}-y^{2}+i 2 x y=3-4 i \end{aligned}$ By identification, $x^{2}-y^{2}=3$ and $2 x y=-4$ Then, $\left\{\begin{array}{c}2 x y=-4 \text { is called sign equation } \\ x^{2}+y^{2}=5 \\ x^{2}-y^{2}=3\end{array}\right.$ $\begin{aligned} & \left\{\begin{array}{l} x^{2}+y^{2}=5 \\ x^{2}-y^{2}=3 \end{array} \text { then } y^{2}=1 \text { and } y=1 \text { or } y=-1\right. \\ & \qquad x^{2}=4 \text { and } x=2 \text { or } x=-2 \end{aligned}$ $2 x y=-4$ implies that x and y should be opposite in sign If $y=1$ then $x=-2,\left(x_{1}, y_{1}\right)=(-2 ; 1)$ If $y=-1$ then $x=2,\left(x_{2}, y_{2}\right)=(2 ;-1)$ d) $\delta_{1}=-2+i$ and $\delta_{2}=2-i$ $\begin{aligned} & \delta_{1}^{2}=(-2+i)^{2}=3-4 i \\ & \delta_{2}^{2}=(2-i)^{2}=3-4 i \end{aligned}$ Conclusion	-Copies notes on the board -Explains concepts	-Copy notes in their books	$\begin{aligned} & \left\|\delta^{2}\right\|=\|z\| \leftrightarrow x^{2}+y^{2}=5 \\ & \\ & \quad \delta^{2}=z \leftrightarrow x^{2}-y^{2}+i 2 x y=3-4 i \end{aligned}$ By identification, $x^{2}-y^{2}=3$ and $2 x y=-4$ Then, $\left\{\begin{array}{r}2 x y=-4 \text { is called sign equation } \\ x^{2}+y^{2}=5 \\ x^{2}-y^{2}=3\end{array}\right.$ $\left\{\begin{array}{l}x^{2}+y^{2}=5 \\ x^{2}-y^{2}=3\end{array}\right.$ then $y^{2}=1$ and $y=1$ or $y=-1$ $x^{2}=4 \text { and } x=2 \text { or } x=-2$ $2 x y=-4$ implies that x and y should be opposite in sign If $y=1$ then $x=-2,\left(x_{1}, y_{1}\right)=(-2 ; 1)$ If $y=-1$ then $x=2,\left(x_{2}, y_{2}\right)=(2 ;-1)$ d) $\delta_{1}=-2+i$ and $\delta_{2}=2-i$ $\begin{aligned} & \delta_{1}^{2}=(-2+i)^{2}=3-4 i \\ & \delta_{2}^{2}=(2-i)^{2}=3-4 i \end{aligned}$ Conclusion	
Exercises of Application (10mins)	Exercise 1) Determine the fifth roots of the complex number Z in the following cases. a) Z is unity b) $Z=-1+i \sqrt{3}$ 2) Given the following quadratic equation: $(E): z^{2}+(2+3 i) z-2(1-2 i)=0$ a) Calculate the discriminant Δ of the equation. b) Find the algebraic form of the square roots of Δ. c) Deduce the solutions of (E). 3) consider the polynomial p define by $p(z)=z^{3}-2 z^{2}-3 z+10$ for any complex number z.	Dictates the exercise	Take down the exercise and do it	Exercise 1) Determine the fifth roots of the complex number Z in the following cases. a) Z is unity b) $Z=-1+i \sqrt{3}$ 2)Given the following quadratic equation: $(E): z^{2}+(2+3 i) z-2(1-2 i)=0$ a) Calculate the discriminant Δ of the equation. b) Find the algebraic form of the square roots of Δ. c) Deduce the solutions of (E). 3) consider the polynomial p define by $p(z)=z^{3}-2 z^{2}-3 z+10$ for any complex number	

	a) verify that -2 is a root of p. b) Find the values of a, b and c such that $p(\mathrm{z})=(\mathrm{z}+2)\left(\mathrm{a} z^{2}+\mathrm{bz}+\mathrm{c}\right)$ c) Solve the equation $p(z)=0$ in \mathbb{C}. 4)a)Using De Moivre's Theorem,show that: $\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)^{1999}=\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}$ b)Expand the expression, $(\cos x+i \sin x)^{3}$ and express $\cos 3 x$ and $\sin 3 x$ in terms of $\cos x$ and $\sin x$.			z. a) verify that -2 is a root of p. b) Find the values of a, b and c such that $p(z)=(\mathrm{z}+2)\left(\mathrm{a} z^{2}+\mathrm{bz}+\mathrm{c}\right)$ c) Solve the equation $p(z)=0$ in \mathbb{C}. 4)a)Using De Moivre's Theorem,show that: $\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)^{1999}=\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}$ b)Expand the expression, $(\cos x+i \sin x)^{3}$ and express $\cos 3 x$ and $\sin 3 x$ in terms of $\cos x$ and $\sin x$.	
Conclusion (5mins)	Bilingual game Give the equivalence of the following words in French: unity; square roots; De Moivre's Theorem. Home work Announcement of the next lesson. The next lesson will be on revision questions on complex numbers.	Copies questions on the board	Copy questions in their note books	Bilingual game Give the equivalence of the following words in French: unity; square roots; De Moivre's Theorem. Home work Announcement of the next lesson. The next lesson will be on revision questions on complex numbers.	

