

SAMPLE LESSON: MATHEMATICS

Class: Upper Sixth Mathematics

Module: Plane Geometry and solid Figures **TOPIC:** Complex Numbers

Title of Lesson: nth root of a non-zero complex number, quadratic

equation and De Moivre's Theorem.

Duration of Lesson: 120mins

Name of Authors: Inspectorate of Pedagogy/Sciences for the Far North Region

Module 4: PLANE GEOMETRY AND SOLID FIGURES

Topic: Complex Numbers

Lesson: nth root of a non-zero complex number, quadratic equation and De Moivre's Theorem.

Objectives: At the end of this lesson, the learners should be able to:

- 1) Determine the algebraic form of the square root of a non-zero complex number;
- 2) Find the nth root of a non-zero complex number;
- 3) Find solutions of a quadratic equation in $\mathbb C$ and also find the roots of polynomial equations with real coefficients;
- 4) Use De Moivre's Theorem to express
 - i) $sinn\theta, cosn\theta$ and $tann\theta$ in terms of powers of $sin\theta, cos\theta$ and $tan\theta$
 - ii) Power of sine or cosine of angles in terms of sine and cosine of multiple angles.

Key question:

How can we solve a polynomial equation in C?

Prerequisite knowledge:

- ✓ Verify whether students can calculate the modulus of a complex number.
- ✓ Verify whether students can solve simultaneous linear equations.

Motivation: The study of complex numbers comes to reinforce our knowledge and skills necessary to study plane geometry.

Didactic materials

Chalk colour chalk, Chalkboard, ruler and set square.

REFERENCES

- EWANE ROLAND ALUNGE. Advanced Level Pure Mathematics Made Easy First Edition.
- -Pure Mathematics With Mechanics Teaching Syllabuses(January 2020)

Stages/Duration	Teaching/Learning activities	Teacher's	Learners'	Learning Points	Observations
		Activities	Activities		
	Verification of Pre-requisites	-Copies	-Solve on	<u>Verification of Pre-requisites</u>	
Introduction	<u>Exercise</u>	questions on	the board	<u>Exercise</u>	
(5mins	a) Calculate the modulus of the complex number $z=4-7i$	the board	as called	a) Calculate the modulus of the complex number	
	b) Solve the simultaneous linear equation: $\begin{cases} x + 2y = 2 \\ x - 2y = -4 \end{cases}$	-Calls	by the	z = 4 - 7i	
	(x-2y=-4)	students to	teacher,	b) Solve the simultaneous linear equation: $\begin{cases} x + 2y = 2 \\ x - 2y = -4 \end{cases}$	
		the board	while the	(x - 2y = -4)	
			others follow up		
			keenly		
Lesson	Activity 1		жестту	Activity 1	
Development	Given a complex number $z = 3 - 4i$	-Copies	-Follow	Given a complex number $z = 3 - 4i$	
and Summary	1)Calculate $(-2+i)^2$.what can we say about z and	activity on	the	1)Calculate $(-2+i)^2$.what can we say about z and	
(100mins)	b = -2 + i	the	instructio	b = -2 + i	
(1001111115)	2)Let $\delta = x + iy$ such that $\delta^2 = z$.	chalkboard	ns and	2)Let $\delta = x + iy$ such that $\delta^2 = z$.	
	a)What can we say about δ and z	-Instructs	carry out	a)What can we say about δ and z	
	b)Give a relationship between $ \delta^2 $ and $ z $	students to copy in their	the activity	b)Give a relationship between $ \delta^2 $ and $ z $	
	c) Using the previous information , find the values (x_1, y_1) and	notebooks	while	c) Using the previous information , find the values (x_1, y_1)	
	(x_2, y_2) of (x, y) .	and allows	interactin	and (x_2, y_2) of (x, y) .	
	d) Consider $\delta_1=x_1+iy_1$ and $\delta_2=x_2+iy_2$	them 10	g with	d) Consider $\delta_1 = x_1 + iy_1$ and $\delta_2 = x_2 + iy_2$	
	Calculate δ_1^2 , δ_2^2 and conclude.	minutes to	each	Calculate δ_1^2 , δ_2^2 and conclude.	
	Resolution	research	other	Resolution	
	1) we easily verify that $(-2+i)^2 = 3-4i$,			1) we easily verify that $(-2+i)^2 = 3-4i$,	
	We can say that b is a square root of z .			We can say that b is a square root of z .	
	2)a) We can say that δ is a square root of z .			2)a) We can say that δ is a square root of z .	
	b) The relationship between $ \delta^2 $ and $ z $			b) The relationship between $ \delta^2 $ and $ z $	
	is $ \delta^2 = z $ because $\delta^2 = z$.			is $ \delta^2 = z $ because $\delta^2 = z$.	
	c) Let's find the values (x_1, y_1) and (x_2, y_2) of (x, y) .			c) Let's find the values (x_1, y_1) and (x_2, y_2) of (x, y) .	
	We have			We have	

F				· · · · · · · · · · · · · · · · · · ·
	$ \delta^2 = z \leftrightarrow x^2 + y^2 = 5$	-Copies	-Copy	$ \delta^2 = z \leftrightarrow x^2 + y^2 = 5$
	$\delta^2 = z \leftrightarrow x^2 - y^2 + i2xy = 3 - 4i$	notes on the	notes in	$\delta^2 = z \leftrightarrow x^2 - y^2 + i2xy = 3 - 4i$
	By identification, $x^2 - y^2 = 3$ and $2xy = -4$	board	their books	By identification, $x^2 - y^2 = 3$ and $2xy = -4$
	(2xy = -4 is called sign equation	Evaloine	DOOKS	(2xy = -4 is called sign equation
	Then, $x^2 + y^2 = 5$	-Explains concepts		$x^2 + y^2 = 5$
	$(x^2 - y^2 = 3)$	concepts		$(x^2 - y^2 = 3$
	$\begin{cases} x^2 + y^2 = 5 \\ x^2 - y^2 = 3 \end{cases}$ then $y^2 = 1$ and $y = 1$ or $y = -1$			$\begin{cases} x^2 + y^2 = 5 \\ x^2 - y^2 = 3 \end{cases} $ then $y^2 = 1$ and $y = 1$ or $y = -1$
	$x^2 = 4$ and $x = 2$ or $x = -2$			$x^2 = 4 \text{ and } x = 2 \text{ or } x = -2$
	2xy = -4 implies that x and y should be opposite in sign			2xy = -4 implies that x and y should be opposite in
	If $y = 1$ then $x = -2$, $(x_1, y_1) = (-2; 1)$			sign
	If $y = -1$ then $x = 2$, $(x_2, y_2) = (2; -1)$			If $y = 1$ then $x = -2$, $(x_1, y_1) = (-2; 1)$
	d) $\delta_1 = -2 + i$ and $\delta_2 = 2 - i$			If $y = -1$ then $x = 2$, $(x_2, y_2) = (2; -1)$
	$\delta_1^2 = (-2+i)^2 = 3-4i$			d) $\delta_1 = -2 + i$ and $\delta_2 = 2 - i$
	$\delta_2^2 = (2-i)^2 = 3-4i$			$\delta_1^2 = (-2+i)^2 = 3-4i$
	$\begin{array}{c} o_2 - (2-i) - 3 - 4i \\ \hline \text{Conclusion} \end{array}$			$\delta_2^2 = (2-i)^2 = 3-4i$
				Conclusion
Exercises of	<u>Exercise</u>			<u>Exercise</u>
Application	1) Determine the fifth roots of the complex number $oldsymbol{z}$ in the			1) Determine the fifth roots of the complex number z in
(10mins)	following cases.			the following cases.
(200000)	a) z is unity	Dictates the	Take	a) z is unity
	b) $z = -1 + i\sqrt{3}$	exercise	down the	$b) z = -1 + i\sqrt{3}$
	2)Given the following quadratic equation:		exercise	2)Given the following quadratic equation:
	$(E): z^2 + (2+3i)z - 2(1-2i) = 0$		and do it	$(E): z^2 + (2+3i)z - 2(1-2i) = 0$
	a) Calculate the discriminant Δ of the equation.			a) Calculate the discriminant Δ of the equation.
	b) Find the algebraic form of the square roots of Δ .			b) Find the algebraic form of the square roots of Δ .
	c) Deduce the solutions of (E).			c) Deduce the solutions of (E).
	3) consider the polynomial p define by			3) consider the polynomial p define by
	$p(z) = z^3 - 2z^2 - 3z + 10$ for any complex number z.			$p(z) = z^3 - 2z^2 - 3z + 10$ for any complex number

	a) verify that -2 is a root of p . b) Find the values of a,b and c such that $p(z) = (z+2)(az^2+bz+c)$ c) Solve the equation $p(z) = 0$ in \mathbb{C} . 4) a) Using De Moivre's Theorem, show that: $\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)^{1999} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$ b) Expand the expression, $(cosx + isinx)^3$ and express $cos\ 3x$ and $sin3x$ in terms of $cosx$ and $sinx$.			a) verify that -2 is a root of p . b) Find the values of a,b and c such that $p(z) = (z+2)(az^2+bz+c)$ c) Solve the equation $p(z) = 0$ in \mathbb{C} . 4) a) Using De Moivre's Theorem, show that: $\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)^{1999} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$ b) Expand the expression, $(cosx + isinx)^3$ and express $cos\ 3x$ and $sin3x$ in terms of $cosx$ and $sinx$.	
Conclusion (5mins)	Bilingual game Give the equivalence of the following words in French: unity; square roots; De Moivre's Theorem. Home work Announcement of the next lesson. The next lesson will be on revision questions on complex numbers.	Copies questions on the board	Copy questions in their note books	Bilingual game Give the equivalence of the following words in French: unity; square roots; De Moivre's Theorem. Home work Announcement of the next lesson. The next lesson will be on revision questions on complex numbers.	