

SAMPLE LESSON: MATHEMATICS

Class: Upper 6

Module: Probability Distribution

TOPIC: Discrete Probability Distribution

Title of Lesson: Introduction to the Poisson Distribution

Duration of Lesson: 50mins

Name of Authors: Group of teachers during training

School: TTP COP Class: USS/USA Duration of lesson: 50 mins Number on Roll :

Module: Probability Distribution

Topic: Discrete Probability Distribution

Lesson: Introduction to the Poisson Distribution

Objectives: At the end of the lesson, the learners should be able to

- Identify the Poisson distribution.
- State the properties of the Poisson distribution.
- Calculate probabilities using the Poisson distribution.

Key Question:

How can we calculate the probability of events that follow a Poisson distribution in life

Pre-requisite Knowledge:

- Knowledge of the concept of discrete random variables.
- Knowledge of the parameters of a distribution.
- Evaluation exponential values using a calculator.

Motivation:

- How many of you were involve in an accident on the way home after school last week?
- How many of you were involve in an accident yesterday?
- How many of you will like to be involve in an accident today or even tomorrow?

Didactic Materials: Calculator, students notebooks, statistical tables.

References:

- (i) 2011, A complete course in A level Statistics by Nche Cheo et al., (first edition), PressPrint Cameroon.
- (ii) A concise course in A level Statistics by Bostock & Chandler. Stanley Thornes Publishers.

TRAVALL TRAVALL

Stages/ Duration	Teaching/Learning Activities	Teacher's	Learners'	Learning Points
		activities	activities	
Introduction	 Verification of Pre-requisite Knowledge What are the possible number of HEADS (H) that can be obtained when one fair coin is tossed 3 times? Can someone come to the board and write down the pmf of the binomial 	Engage learners' attention.	Listens and	If a random variable, say X is such that the average of mean number of occurrences of the events per given interval is λ , then its pmf is given by
10 mins	 e Evaluate e⁰, e^{1.5}, e⁻³. PROBLEM SITUATION		responds to questions.	$P(X = x) = \frac{e^{-\lambda}}{x!}, x = 0, 1, 2, 3, \dots$ where λ is the parameter of the distribution.
	How can the government of Cameroon interpret problems involving the Poisson distribution and take decisions that can improve the lives of Cameroonians?			If the random variable X is distributed as such, then we say that X follows a Poisson distribution with parameter λ , and is written as $X \sim P(\lambda)$.
	Consider the two events given below:1. The number of car accidents that occur on a particular stretch of a road per week.2. The number of parents who come, uninvited to see the principal within each hour of a working day.			 λ is the average or mean number of occurrences of the event per given interval. x is the number of occurrences demanded from the question.

TRAVAIL TRAVAIL

Stages/ Duration	Teaching/Learning Activities	Teacher's	Learners'	Learning Points
		activities	activities	
	What are the similarities between the two events? Such events were first investigated by the renown French Mathematician, Denis Simeon Poisson, which he published in 1838 in a book titled. Research on the probability of judgements in criminal and civil matters.	Provokes the discussion between learners	Discuss with mates and making suggestions to the teacher.	
Lesson Development 20mins	If a random variable, say X is such that the average of mean number of occurrences of the events per given interval is λ , then its pmf is given by $P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, x = 0, 1, 2, 3, \dots$ where λ is the parameter of the distribution. If the random variable X is distributed as such, then we say that X follows a Poisson distribution with parameter λ , and is written as $X \sim P(\lambda)$.	Explains the concepts and presents them on the chalk board	Listen to the teacher and copy notes.	If a random variable, say <i>X</i> is such that the average of mean number of occurrences of the events per given interval is λ , then its pmf is given by $P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, x = 0, 1, 2, 3, \dots$ where λ is the parameter of the distribution. If the random variable <i>X</i> is distributed as such, then we say that <i>X</i> follows a Poisson distribution with parameter λ , and is written as $X \sim P(\lambda)$. <i>NOTE</i> :

TRAVAL

Stages/ Duration	Teaching/Learning Activities	Teacher's	Learners'	Learning Points
		activities	activities	
	• λ is the average or mean number of occurrences of the event per given interval.			 λ is the average or mean number of occurrences of the event per given interval.
	• <i>x</i> is the number of occurrences demanded from the question.			• <i>x</i> is the number of occurrences demanded from the question.
	Properties of the Poisson Distribution			Properties of the Poisson Distribution
	Events occur randomly.			➢ Events occur randomly.
	Events occur independently.			Events occur independently.
	Intervals are equal.			Intervals are equal.
	The probability of occurrence of an event per interval is very small.			The probability of occurrence of an event per interval is very small.
	Example 1			Example 1
Application	Cars arrive at a petrol station at an average of 3 per hour. Assuming that number of cars arriving at the petrol station follows a Poisson distribution, Find, to four decimal places, the probability that (a) no car arrives at the station			Solution: (a) $\lambda = 3, x = 0$, so then X ~ P(3). $P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$
Exercises	within an hour,			

TRAVAIL TRAVAIL

Stages/ Duration	Teaching/Learning Activities	Teacher's	Learners'	Learning Points
		activities	activities	
	(b) exactly 2 cars will arrive at the			$P(X=0) = \frac{e^{-3}(3^0)}{2} = 0.0498$
10mins	station within an hour.			0!
	Remark:			(b) $P(X=2) = \frac{e^{-3}(3^2)}{2!} = 0.2240$
	The interval may be changed as required by some			2!
	questions, In such a case, the value of λ will			Remark:
	change.			The interval may be changed as required
	From the example above the average number of			by some questions, In such a case, the
	cars that arrive per hour is 3. What will be the			value of λ will change.
	average number of cars that will arrive the station			From the example above the average
				number of cars that arrive per hour is 3.
	(a) 2 hours, (b) 15 minutes?			What will be the average number of cars
	Example 2			that will arrive the station within
	Lum, a bank auditor finds out that a particular			(a) 2 hours, (b) 15 minutes?
	bookkeeping department makes averagely two			Example
	errors per week. Find, to three significant figures,			SOL UTION.
	the probability that			
	(a) exactly four errors will be			(a) $\lambda = 2, x = 4$, so then X ~ P(2).
	made in one week,			$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$
	(b) exactly two errors will be			

TRAVAIL TRAVAIL

Stages/ Duration	Teaching/Learning Activities	Teacher's	Learners'	Learning Points
		activities	activities	
	made in three weeks.			$P(X=4) = \frac{e^{-2}(2^4)}{4!} = 0.0902$
				(b) 3 weeks $\Rightarrow \lambda = 6$,
				so that $X \sim P(6)$.
				$P(X=2) = \frac{e^{-6}(6^2)}{2!} = 0.0446$
	Exercises			Exercises
	1. The number of calls received by an office during each minute of a working day follows a Poisson distribution with mean 4. Find, to four decimal places, the probability that the office will			 The number of calls received by an office during each minute of a working day follows a Poisson distribution with
	(a) three calls during any particular minute,			mean 4. Find, to four decimal places, the probability that the office will receive
	(b) no call in a two minutes period,			(a) three calls during any particular minute
	(c) four calls in a period of fifteen			(b) no call in a two minutes period
				(c) four calls in a period of fifteen

TRAVALL NUMB

Stages/ Duration	Teaching/Learning Activities	Teacher's	Learners'	Learning Points
		activities	activities	
Conclusion and	If the average number of accidents that occur in the country yearly can be calculated, then probabilities can be calculated and that may push			Home work. A certain textbook has on average two misprints on each page. Assuming that
Homework 5mins	the government to look for the cause,	Dictates home work and gives instructions against the next lesson	Copy home work in their notebooks and listen to the instructions given.	(a) there will be no misprint on a particular chosen page,
				(b) exactly four misprints on three chosen pages,(c) exactly two misprints on half a page.