AIMS
African Institute for
Mathematical sciences
NEXT EINSTEIN INITIATIVE

SAMPLE LESSON: MATHEMATICS

Class: Upper Sixth Mathematics

Module: PLANE GEOMETRY AND SOLID FIGURES

Title of Lesson: Introduction to the complex number system and its properties.

TOPIC: Complex Numbers

Duration of Lesson: 120mins

Name of Authors: Inspectorate of Pedagogy/Sciences for the Far North Region

Module 4 : PLANE GEOMETRY AND SOLID FIGURES

Topic: Complex Numbers
Lesson: Introduction to the complex number system and its properties.
Objectives: At the end of this lesson, the learners should be able to:

1) Identify a complex number
2) Find the conjugate of a complex number
3) Represent the image of a complex number on an Argand Diagram
4) Add, multiply and divide two complex numbers.

Key question:

What is a complex number?

Prerequisite knowledge:

\checkmark Verify whether students can identify the various sets of numbers.
\checkmark Verify whether students can solve quadratic equations in \mathbb{R}.
Motivation: The study of complex numbers comes to reinforce our knowledge and skills necessary to study plane geometry.
Didactic materials
Chalk, colour chalk, Chalkboard, ruler and set square.
REFERENCES

- EWANE ROLAND ALUNGE. Advanced Level Pure Mathematics Made Easy First Edition.
- Pure Mathematics With Mechanics Teaching Syllabuses (January 2020)

AIMS
African Institute for
Mathematical Sciences NEXT EINSTEIN INITIATIVE

Stages/ Duration	Teaching/Learning activities	Teacher's Activities	Learners' Activities	LEARNING POINTS	Observation
Introduction (5mins)	Verification of Pre-requisites Exercise a)Given the sets $\mathbb{D} ; \mathbb{N} ; \mathbb{Q} ; \mathbb{R} ; \mathbb{Z}$, rearrange them using the symbol of inclusion " \subset " b)Solve in \mathbb{N} the following equation. $x^{2}-25=0$	-Copies questions on the board -Calls students to the board	-Solve on the board as called by the teacher,	Verification of Pre-requisites Exercise a)Given the sets $\mathbb{D} ; \mathbb{N} ; \mathbb{Q} ; \mathbb{R} ; \mathbb{Z}$, rearrange them using the symbol of inclusion " \subset " b)Solve in \mathbb{N} the following equation. $x^{2}-25=0$	
Lesson Development and Summary (100mins)	Activity Solve in \mathbb{R} the following equations 1) $x^{2}-144=0$; 2) $x^{2}+169=0$ Solution 1) $x^{2}-144=0 \leftrightarrow x=12$ or $x=-12$ $\mathrm{S}=\{12 ;-12\}$ 2) $x^{2}+169=0 \leftrightarrow x^{2}=-169$ impossible It is impossible to solve this second equation in IR. We should admit the existence of a set bigger than IR which contains a number i such that $i^{2}=-1$ Then $x^{2}=i^{2} 13^{2}$ And $x=13 i$ or $x=-13 i$ i will be called imaginary number and this new set will be called set of complex numbers and denoted \mathbb{C}. Definition A complex number is a number which is written in the form $z=a+i b$ where $(a ; b) \in I R^{2}$ and $i^{2}=-1$	-Copies activity on the chalkboard -Instructs students to copy in their notebooks and allows them 10 minutes to research -Copies notes on the board -Explains concepts	-Follow the instructions and carry out the activity while interacting with each other -Copy notes in their books	Activity Solve in \mathbb{R} the following equations 1) $x^{2}-144=0$; 2) $x^{2}+169=0$ Solution 3) $x^{2}-144=0 \leftrightarrow x=12$ or $x=-12$ $\mathrm{S}=\{12 ;-12\}$ 4) $x^{2}+169=0 \leftrightarrow x^{2}=-169$ impossible It is impossible to solve this second equation in IR. We should admit the existence of a set bigger than IR which contains a number i such that $i^{2}=-1$ Then $x^{2}=i^{2} 13^{2}$ And $x=13 i$ or $x=-13 i$ i will be called imaginary number and this new set will be called set of complex numbers and denoted C. Definition A complex number is a number which is written in	Ensure logical presentation of work Be rigorous on representatio n

African Institute for
Mathematical Science Mathematical Sciences
NEXT EINSTEIN INITIATIVE

$$
\text { the form } z=a+i b \text { where }(a ; b) \in I R^{2} \text { and }
$$

$$
i^{2}=-1
$$

-The real number a is called the real part of z and denoted $R(z)$

- The real number b is called the imaginary part of z and denoted $\operatorname{Im}(z)$.
$z=a+i b$ is called the algebraic form of the complex number Z
-The set of complex numbers is denoted \mathbb{C}.
$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$
Example
$z=-4+5 i z=\frac{2}{5}-4 i$
Follow up as the teacher explains, asking and answering questions where necessary

Graphic representation of a complex number on

 an Argand Diagram(complex plane)For every complex number $z=a+i b$ we can
associate a point $M(a ; b)$ of the plane. Reciprocally for every point $M(a ; b)$ we can always assign a complex number $z=a+i b$
Z is called the affix of the point M and
M is called the image of the complex number Z.
Example
Represent on an Argand Diagram
The image B of the complex number $z=2-3 i$
Resolution

Scholars Program NEXT EINSTEIN INITIATIVE

Definition
The complex number define by $a-i b$ is called the complex conjugate of the complex number $z=a+i b$ and denoted by \bar{z} or z^{*}

Example

if $z=-4+5 i$ then $\bar{z}=-4-5 i$ if $Z^{\prime}=\frac{2}{5}-4 i$ then $\bar{Z}^{\prime}=\frac{2}{5}+4 i$
properties (of complex conjugate)
let z and z ' be two complex numbers
$\rightarrow) \overline{\bar{z}}=z$
$\rightarrow) \overline{z+z^{\prime}}=\bar{z}+\overline{z^{\prime}}$
$\rightarrow) \overline{z \times z^{\prime}}=\bar{z} \times \overline{z^{\prime}}$
$\rightarrow) \overline{\left(z^{n}\right)}=(\bar{z})^{n} \forall n \in \mathbb{N}$
$\rightarrow) R_{e}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
Properties
(equality, sum, multiplication and quotient of complex numbers)
Given two complex numbers $z=a+i b$ and $z^{\prime}=a^{r}+i b^{r}$
\rightarrow Equality of two complex numbers
$z=z^{\prime}$ if and only if $a=a^{\prime}$ and $b=b^{\prime}$
\rightarrow)sum of two complex numbers

Scholars
Program
AIMS
African Institute for
Mathematical Sciences Mathematical sciences
NEXT EINSTEIN INITIATIVE

$$
\begin{aligned}
& \rightarrow) \underline{\text { Quotient of two complex numbers }} \\
& \text {-Inverse of a complex number } \\
& \text { If } Z \neq 0 \text { then } \frac{1}{z}=\frac{1}{z} \times \frac{\bar{z}}{\bar{z}}=\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}} \\
& \text {-Quotient of two complex numbers } \\
& \text { If } z^{\prime} \neq 0 \\
& \begin{array}{r}
\frac{z}{z^{\prime}}=z \times \frac{1}{z^{\prime}} \\
\quad=(a+i b) \times\left(\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}\right)
\end{array}
\end{aligned}
$$

Example
Give the algebraic form of the complex number
$z=\frac{2+3 i}{5+2 i}$
Resolution
$z=\frac{2+3 i}{5+2 i}=\frac{2+3 i}{5+2 i} \times \frac{5-2 i}{5-2 i}=\frac{16}{29}+\frac{11 i}{29}$
Remark
Let $z=a+i b$ be a complex number,
$>z$ is purely imaginary $\leftrightarrow a=0$
$>z$ is real $\leftrightarrow b=0$
$\frac{z-2 i}{z+4}=0$ be purely imaginary.

$$
\begin{aligned}
& z+z^{\prime}=\left(a+a^{\prime}\right)+i\left(b+b^{\prime}\right) \\
& \rightarrow) \text { Product of two complex numbers } \\
& z \times z^{\prime}=a a^{\prime}-b b^{\prime}+i\left(a^{\prime} b+b^{\prime} a\right) \\
& (a+i b)^{2}=a^{2}-b^{2}+i 2 a b \\
& (a-i b)^{2}=a^{2}-b^{2}-i 2 a b \\
& (a+i b)(a-i b)=a^{2}+b^{2} \\
& z \times z^{\prime}=0 \text { if and only if } z=0 \text { or } z^{\prime}=0 \\
& \rightarrow) \underline{\text { Quotient of two complex numbers }} \\
& - \text { Inverse of a complex number } \\
& \text { If } z \neq 0 \text { then } \frac{1}{z}=\frac{1}{z} \times \frac{\bar{z}}{\bar{z}}=\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}} \\
& -\underline{\text { Quotient of two complex numbers }} \\
& \text { If } z^{\prime} \neq 0 \\
& \frac{z}{z^{\prime}}=z \times \frac{1}{z^{\prime}} \\
& \quad=(a+i b) \times\left(\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}\right)
\end{aligned}
$$

Example
Give the algebraic form of the complex number $Z=\frac{2+3 i}{5+2 i}$
Resolution
$z=\frac{2+3 i}{5+2 i}=\frac{2+3 i}{5+2 i} \times \frac{5-2 i}{5-2 i}=\frac{16}{29}+\frac{11 i}{29}$
Remark
Let $z=a+i b$ be a complex number,
$>z$ is purely imaginary $\leftrightarrow a=0$
> z is real $\leftrightarrow b=0$
$\frac{z-2 i}{z+4}=0$ be purely imaginary.

AIMS
African Institute for
Mathematical Scienc Mathematical Sciences

Exercises of Application (10mins)	Exercise a)Determine E, the set of points $M(z)$ such that $\frac{z-2 i}{z+4}=0$ be real. b) Determine F, the set of points $M(z)$ such that $\frac{z-2 i}{z+4}=0$ be purely imaginary.	Dictates the exercise	Take down the exercise and do it	Exercise a)Determine E, the set of points $M(z)$ such that $\frac{z-2 i}{z+4}=0$ be real. b) Determine F, the set of points $M(z)$ such that $\frac{z-2 i}{z+4}=0$ be purely imaginary.
Conclusion (5mins)	Bilingual game Give the equivalence of the following words in French: complex number; affix; purely imaginary. Assignments Exercise 20.2,page404,Advanced level pure maths made easy. Announcement of the next lesson. The next lesson will be on modulus and Argument of a complex number ,polar form of complex number.	Copies questions on the board	Copy questions in their note books	Bilingual game Give the equivalence of the following words in French: complex number; affix; purely imaginary. Assignments Exercise 20.2,page404,Advanced level pure maths made easy. Announcement of the next lesson. The next lesson will be on modulus and Argument of a complex number , polar form of complex number.

