SAMPLE LESSON: MATHEMATICS

Class: Form 2

Title of Module: Elementary Statistics and Probability
Title of Chapter: Probability

Title of Lesson: Introducing Probability
Duration of Lesson: 55 minutes

African Institute for
Mathematical Science
Mathematical Sciences NEXT EINSTEIN INITIATIVE

SCHOOL: TTP COP;
TERM: $2^{\text {nd }}$;
DATE

Class: Form 2;
Number on Roll: \qquad ; Girls: \qquad Boys: \qquad

Module: Elementary Statistics and Probability

Topic: Probability

Lesson 1: Introducing Probability;
Duration: 60 mins

Objectives:

Be able to:

- Master some vocabularies (Probability, events, impossible events, Certain, Likely, Unlikely, fair, bias, Outcome, sample space, equally likely).
- List all possible outcomes (sample space) for a given event;
- Place events on a probability scale based on the likelihood of the event happening

Rationale: Probability is meant to assist us to better understand situations where we are called upon to make prediction. We can cite many such situations; doctors may want to establish risks of a disease in a medical research, gamblers may wish to establish chances of winning a lottery, those in the Insurance business may be interested in calculating life expectancy for actuarial purposes etc. We may wish to predict the outcome after a game e.g. tossing a coin, playing cards, rolling dice etc. Probability helps us make predictions in such cases.

Probability is very much applicable in our day-to-day lives. Terms commonly used that are associated with probability are many some of which are: chance, certain, uncertain, good chance, poor chance, likely, unlikely, fair, biased, might, may be, impossible, possible, probable, sure, not sure, definitely among others. Each of these vocabularies will be introduced and learned gradually throughout the topic, whenever possible.

Preparation for the $\mathbf{3}$ lessons on probability for this class:

1. Games prepared (If you intend to use a game)
2. Gather Materials such as:

AIMS
African Institute for
Mathematical Scien Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Coins of 50 frs and 100 frs
As many as you can provide.
(If your students are not to be trusted, tell
them the day before that they will need
coins during the next lesson. They will
therefore bring)
Dice
Bring dice according to number of groups

Scholars Program

 AIMSAfrican Institute for
Mathematical Science Mathematical Sciences
NEXT EINSTEIN INITIATIVE

3. Read through lesson plan and print out if necessary
4. Type and print out problem situation OR write out on cardboard paper (large characters) that will be pested on the wall for all to see.
References:

1. https://www.bing.com/search? $\mathrm{q}=$ =spinner+for+games\&form=EDNTHT\&mkt=en-us\&httpsmsn=1\&refig=e7060f073dc1451dbcbaa690e12e2ec2\&sp=2\&qs=HS\&pq=sp\&sk=HS1\&sc=8-2\&cvid=e7060f073dc1451dbcbaa690e12e2ec2\&cc=US\&setlang=en-US
2. https://www.onlinemathlearning.com/probability-of-an-event.html
3. https://www.mathsisfun.com/probability_line.html
4. Modular Mathematics for GCSE, Brain Gaulter and Leslye Buchanan, (1994) Oxford University Press
5. Mathematics 7, Nelson Thornes (2003)
6. Ordinary Level Mathematics, Piankeh Albert, (2011), Mbosso Publishers Bamenda

African Institute for Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Stages / Duration	Teaching / Learning Activities		Learning Points	Observations
	Teacher's Activities	Learners' activities		
	Wrap up this part by asking the questions and saying: So, in life, you choose and choose and choose and every choice is a prediction of how likely you think an event or series of events is to happen. We can actually measure how likely it is for something to happen, and that measurement is call PROBABILITY Then write the Topic Probability on the board and the title of the lesson for the day	Learners copy the learning point in their note books Students copy this last part of the introduction into their note books	You use probability in daily life to make decisions when you don't know for sure what the outcome will be. The study of probability is a useful and interesting branch of mathematics. In our daily lives, we encounter situations where decisions are to be made using past experiences. Probability is also applied when making decisions in business, games of chance etc.	
Problem Situation Wrong choice 5 mins	Listen to this real life situation and reflect on the scenario. Call out a student to read to others. Joan and Joel are twins and usually walk each day to school. They are each given 500 frs each day for food in school. This morning, because they watched a late football match, they got up late and left the house late and without having breakfast. Joan used part of her 500frs to take a taxi to school and Joel trekked as usual. Joel	Learners reflect on the problem situation. They discuss among themselves	We make choices in life and at times these choices could be good or bad based on what we want. At times we even regret about our decision. However, if choices are made based on past experiences, most of the time the decisions taken are most likely going to be the better or best.	Allow learners sufficient time to reflect and think on this Problem situation Caution and focus learners

AIMS
African Institute for
Mathematici
African Institute for
Mathematical Sciences NEXT EINSTEIN INITIATIVE

Stages / Duration	Teaching / Learning Activities		Learning Points	Observations
	Teacher's Activities	Learners' activities		
	got to school late and missed the first lesson and was punished. During break, Joan came begging to share in Joel's food because she did not have enough money. -Why did Joan take a taxi to school? -What was the consequence of Joan using part of her food money? -What was the consequence on Joel's decision not to take a taxi? -What were their decisions based on?		Therefore, knowing or estimating the probability or likelihood or the chance of an event helps in making worthwhile decisions.	so that they do not go out of control or make statements that can hurt one of them in class.
Activity 1: Tossing a coin 15 mins	Define the different faces of the coin with the students. Agree with the students on which face is the head and which face is the tail. Put students in groups according to their sitting positions in class so that much time is not wasted during the lesson. Distribute copies of worksheets to groups and invite groups to follow the instructions on the worksheet: You are given a coin, throw it up and let it fall freely (allow other members of the group to also toss the coin). 1. Toss the coin five times.	Learners carry out the activity	When a coin is tossed, the rest positions are either a Head or a Tail Tossing a coin is an Event The head or a tail appearing is an Outcome The possible results of an experiment or result of an event is an Outcome. The event of tossing a coin has 2 possible outcomes.	While groups are working observe the groups to

African Institute for
Mathematical Scien Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Scholars Program

African Institute for
Mathematiculs Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Stages / Duration	Teaching / Learning Activities		Learning Points	Observations
	Teacher's Activities	Learners' activities		
	The possible outcomes for tossing a coin are: Head, Tail. This set of possible outcomes can be written as \{Head; Tail) or simply (H; T) This set is called the SAMPLE SPACE.		Vocabularies learned: Probability, Event, Outcome, Equally Likely events, even chance, Sample space.	
Activity 2: Rolling a dice	Give each group a die. Tell them it is the normal die used in playing games such as snakes and ladder, monopoly, ludo etc. Tell the students to roll the dice once. Ask each group the following questions: 1. What is the number of dots that is on the face your group is seeing? 2. How many possible rest positions are there? 3. Copy and finish this list of possible outcomes: 1 , 2, \qquad 4. Which of the faces is more likely to show up? Why? 5. Give the sample space for rolling a dice 6. How many times can we have a face showing letter A? 7. How many times can we have the face showing an egg? 8. Now consider that the dice has 3 dots on all the faces. At each rolling of the die, What will the outcome be? Say whether each of the following is an Impossible event or an event that is Certain:		The event of rolling a dice and having a face with either 1 or 2 or 3 or 4 or 5 or 6 dots are equally likely events. 1. Each group gives what they see. 2.There are 6 possible rest position, 3. Possible outcomes are: $1,2,3,4,5,6$ 4. None of the faces is most likely to show up because the events are equally likely. 5. Sample space for a dice is: $\{1,2,3,4,5,6\}$ 6 . No face of the die is having letter A on it So the event of having letter A is an impossible event because no matter how many times we roll this die, we will not have letter A. 7. No face has an egg on it so no matter how many times the dice is rolled, we can never have an egg. It is therefore also an Impossible event. 8.If all the faces of the die have 3 dots, the event of having a 3 at each throw is Certain. No matter how many times we roll the die, we will always have a face with 3 dots.	Ensure that members of each group take turns to roll the dice. You could use a bag with buttons of two different colours to bring it impossible events, most likely, less likely and Certain events you could use a bag with some geometrical shapes or with fruits.

Scholars Program

African Institute for Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Stages / Duration	Teaching / Learning Activities		Learning Points	Observations
	Teacher's Activities	Learners' activities		
Use of more Vocabularies: Less Likely, More likely,	Wrap up activity 1 and activity 2 The coin in activity 1 and the dice in activity 2 are considered to be fair and not biased. That is the possibility of having one face is the same as the possibility of having the other face. The events of having any of the outcomes are therefore equally likely events and have an Even Chance of occurring. Here are some statements for your reflection. In your groups discuss the following statements using the words likely, impossible, and certain, more likely or less likely or any other word. a) If you go to the school library you will see books b) It will rain every day for two years. c) If you roll a dice you will get a number less than 6 d) If you roll a dice you will get a number more than 6. e) Schools will be open on Christmas day. f) If you roll a dice you will have an even number. g) Selecting at random a girl in a classroom of 50 girls and 20 boys h) Selecting at random a girl in a classroom of 05 girls and 40 boys. i) Charlotte puts 10 red, 3 black and 5 yellow buttons in a bag. She takes out one button without	Learners get into groups. Learners discuss the different situations presented	The events of having any of the outcomes are therefore equally likely events and have an Even Chance of occurring. a) If you go to the school library you will see books. It is certain b) It will rain every day for two years. It is Impossible c) If you roll a dice you will get a number less than 6. It is likely to happen d) If you roll a dice you will get a number more than 6. Impossible e) Schools will be open on Christmas day. Impossible f) If you roll a dice you will have an even number. It is likely g) Selecting a girl in a classroom of 50 girls and 20 boys. More likely h) Selecting a girl in a classroom of 05 girls and 40 boys. Less likely i) The red button is more likely to come out because they are more in number than the other colours. The black buttons are less likely to come out because they are few.	Encourage learners to make statements using these words Give learners sufficient time to think and discuss Could also use a practical activity introducing the notions of More Likely, Less Likely, impossible or Certain events. Could use buttons of

Stages / Duration	Teaching / Learning Activities		Learning Points	Observations
	Teacher's Activities	Learners' activities		
	looking. Which colour of button is she more likely to get? Why? Which colour of button is she less likely to get? Why? j) The next car you will see coming will be on wheels. k) The day after Wednesday is Monday. l) The month after May is June.		j) The next car you will see coming will be on wheels. It is Certain k) The day after Wednesday is Monday. Impossible l) The month after May is June. Certain Some events are Certain, some are Impossible, some are Most likely and some are Less likely to happen depending on the condition.	different colours or different shapes in a bag.
Conclusion	The key Vocabularies learned today are Event, Outcome, equally Likely, even chance, fair, certain, bias, impossible, Sample Space, Probability of an event		Key Words: Probability' Event, Outcome, equally Likely, even chance, fair, certain, bias, impossible, Sample Space, Most likely, Less Likely, Probability of an event	introduce more vocabs as the lesson progresses.
Home Work	1. Say whether these events have an even chance of happening. a) Drawing a red card from a well shuffled pack of cards. b) Sany will get an even number when he rolls a dice. c) Janice will get a head when she tosses a coin. 2. Manyui puts 5 purple beads and 1 yellow beads in a bag. Manyui takes a bead without looking. a)What colour bead is she likely to get? b) Explain why	Copy Home work in their assignment books	1. a) even chance because we have 26 red cards and 26 black cards. b)even chance because we have 3 even numbers and 3 odd numbers c) even chance 2. a) Manyui is more likely to get the a purple bead b) Because there are more purple beads than yellow beads.	

