SAMPLE LESSON: MATHEMATICS

Class: Upper 6

Module: Probability Distribution

TOPIC: Random Variable and Discrete Random Variable

Duration of Lesson: 50mins

Name of Authors: Group of teachers during training

School: TTP COP
CLASS: UPPER SIXTH ARTS

Term: 2

No on Roll: Girls: Boys:

Module:

Topic: Discrete Random Variables
Lesson: The expectation of a random variable.
Lesson objective:
At the end of this lesson, learners should be able to calculate and interpret the expectation of any discrete random variable, X .
KEY QUESTION: How can a business man determine the number of items to be bought based on the previous sale?

Perquisite knowledge:

Learners can
> Calculate probabilities of events
> define probability distribution and random variable
$>$ collect data and put them in frequency distribution tables
> calculate the mean of data in frequency distribution tables.

Motivation: The number of students in a school, the number of students to be promoted or dismissed, the amount of money a citizen earns are estimated based on average.

Didactic materials: chalk, ruler, 20 dice.

References: *J CRAWSHAW et al (2004), A concise course in advanced level statistics, fourth edition
*April 2011, Mathematics teaching schemes of work for Advanced level.

Scholars
AIMS
African Institute for
Mathematical Sciences next Einstein initiative

Stages /duration	Teaching and learning Activities.	Teacher's Activity	Learners' Activity	Learning Points
Introduction (5 minutes)	A/- Verification of pre-requisite knowledge. 1)What is probability distribution? 2)A fair coin is tossed three times. What is the probability of obtaining exactly one head? 3)What is a random variable? 4) Given the data in the table as Use the data to calculate the mean score. B/-Problem situation. A man tosses a fair die 240 times and wants to know the mean score. How will you use the results recorded to obtain the mean score?	Asks oral questions Draws the table on the board and asks the students to calculate the mean.	Respond orally Calculate and give the answer orally.	Knowledge of probability distribution Probability of simple events Knowledge of Random Variable The mean of the given data is $\frac{16}{5}$
Lesson Development 30 mins	The man in the problem situation recorded the result as on this table below Mean, $\bar{x}=\frac{1 \times 36+2 \times 37+3 \times 42+4 \times 43+5 \times 44+6 * 38}{240}$ $=3.57 \text { (2dp) }$ Mean $\begin{aligned} & =1 \times \frac{36}{240}+2 \times \frac{37}{240}+3 \times \frac{42}{240}+4 \times \frac{43}{240}+5 \times \\ & \frac{44}{240}+6 \times \frac{38}{240} \end{aligned}$ *The fractions $\frac{36}{240}, \frac{37}{240}, \frac{42}{240}, \frac{43}{240}, \frac{44}{240}$ and $\frac{38}{240}$ are called the relative frequencies. *The sum of these relative frequencies, $\frac{36}{240}, \frac{37}{240}$, $\frac{42}{240}, \frac{43}{240}, \frac{44}{240}$ and $\frac{38}{240}$ is 1	Tossing a fair die for 240 times is time wasting! *He gives the 20 dice to the students *Guides the students to collect data. *Asks the students to calculate the mean of the data collected. While he supervises learners' activities. *Asks the students if they would have the same results if the experiment was repeated.	*They toss the 20 dice for 12 times *They collect data from the 12 tosses. *They calculate the mean as instructed. *Answer orally *Conclude with the teacher.	The expectation of a random variable. Consider a fair die which is tossed 240 times and the results shown on the table below. The mean score is calculated as follows: Mean , \bar{x} $\begin{aligned} & =\frac{1 \times 36+2 \times 37+3 \times 42+4 \times 43+5 \times 44+6 * 38}{240} \\ & =3.57(2 \mathrm{dp}) \end{aligned}$ Mean can also be expressed as $\begin{aligned} & 1 \times \frac{36}{240}+2 \times \frac{37}{240}+3 \times \frac{42}{240}+4 \times \frac{43}{240}+5 \times \\ & \frac{44}{240}+6 \times \frac{38}{240} \end{aligned}$ The fractions $\frac{36}{240}, \frac{37}{240}, \frac{42}{240}, \frac{43}{240}$, $\frac{44}{240}$ and $\frac{38}{240}$ are called the relative frequencies.

Stages /duration	Teaching and learning Activities.	Teacher's Activity	Learners' Activity	Learning Points						
	*Each of these fractions approaches $\frac{1}{6}$ (the probability of obtaining a 1 or a 2 or a 3 or a 4 or a 5 or a 6 when a fair die is tossed once) as the number of tosses increases infinitely. *Therefore, in experimental (practical) approach we use the word mean, and it is obtained from \sum score \times relative frequency(for all the scores) While in a theoretical approach, we use the expected mean or expectation and it is obtained from \sum score \times probability (for all the scores) Hence for any discrete random variable, X, the expectation of X is written as $E(X)$ and it is defined as $E(X)=\sum_{\text {for all } x}(x P(X=x))$ Note: *To differentiate between practical and theoretical mean we use \bar{x} for practical mean, and μ for theoretical mean. ${ }^{*} \sum_{\text {for all } \boldsymbol{x}}(\boldsymbol{x P}(\boldsymbol{X}=\boldsymbol{x}))$ means the sum of the product of score and probability of that score.	*The teacher concludes. *He draws a conclusion with the students and deduces the formula for the expectation *puts the first problem on the board and works with the students.	*work with the teacher and copy the notes put on the board by the teacher. *participate by asking or answering questions	The sum of these fractions, $\frac{36}{240}, \frac{37}{240}, \frac{42}{240}$, $\frac{43}{240}, \frac{44}{240}$ and $\frac{38}{240}$ is 1 Each of these fractions approaches $\frac{1}{6}$ (the probability of obtaining $a 1$ or a 2 or a 3 or a 4 or a 5 or a 6 when a fair die is tossed once) as the number of tosses increases infinitely. *Therefore, in experimental (practical) approach we use the word mean, and it is obtained from \sum score \times relative frequency(for all the scores) While in a theoretical approach, we use the expected mean or expectation and it is obtained from \sum score \times probability (for all the scores) Hence for any discrete random variable, X , the expectation of X is written as $E(X)$ and it is defined as $E(X)=\sum_{\text {for all } x}(x P(X=x))$ Note: *To differentiate between practical and theoretical mean we use \bar{x} for practical mean, and μ for theoretical mean. ${ }^{*} \sum_{\text {for all } x}(\boldsymbol{x P}(\boldsymbol{X}=\boldsymbol{x}))$ means the sum of the product of score and probability of that score.						
Application Exercises	Example 1. An unbiased die is tossed once. Calculate the mean score.	*puts on the questions on the board and marks notebooks	*attempts in their notebooks	Solution to example 1:						
				score, x	1	2	3	4	5	6
				$\mathrm{P}(\mathrm{X}=\mathrm{x})$	1/6	1/6	1/6	1/6	1/6	1/6

AIMS
African institute for
Mathematical science NEXT EINSTEIN INITIATIVE

Stages /duration	Teaching and learning Activities.				Teacher's Activity	Learners' Activity	Learning Points			
and	x	0	1	2	Puts the question on the board.	Copy in their notebooks.	X	0	1	2
	$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0.5	0.3	0.2			$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0.5	0.3	0.2
Conclusion	Calculat 2)A rand 1 and x. $P(T=x)=3$ 2) An ex question which on choose th the num expectatio	$E(X)$ m vari ven t ($T=1$) con each one answ of q n of X	ca T) $=$ the th our ect. ran ns	only two values and of x ltiple choice ted answers of dents decided to Let X represent correct. Find the			Calculat 2)A rand values $P(T=x)=3$ 2) An ex questions of which decided Let X rep has corr	E(X) va nd x $T=1)$ con each nly o choo sent . Fin	can tha the fthr our orre ans umb expe	only two $=1.75$ and of x ltiple choice ted answers students at random. questions he of X.

