

SAMPLE LESSON: MATHEMATICS

Class : Form 5

Title of Module 2: Plane Geometry

Title of Chapter: Coordinate Geometry

Title of Lesson: Distance between two points

Duration of Lesson: 60mins

Name of Authors: Group of teachers during workshop

Name of School: TTP COP: Class: Form 5;

orm 5; E

Enrolment: Boys: _____

Girls: _____ Total: _____; Duration of lesson: 1hr 30min

Module 02: Plane Geometry

Topic: Coordinate Geometry

Lesson Title: Distance between two points

Lesson Objectives: By the end of this lesson, learners should be able

- To calculate the distance between two given points
- To determine the coordinate of midpoint of a line segment

Key Questions: Do my learners know that distance is a scalar quantity?

Pre-requisite Knowledge: Students can:

- Draw lines of specific measurement.
- Plot and linked points
- Carry out simple algebraic operations
- Determine the number of unit between points that are either horizontally or vertically

Rational/ Motivation: Many real life situations require us to determine distances between two points. It could be in sporting activities, construction, surveying, engineering or other real life situations.

Didactic Materials: Activity sheet and graph papers (or graph books), graph board

References:

- > August 2014 Mathematics teaching syllabus form 1 and 2. Ministry of secondary education, Cameroon.
- Karen E. Lyonga (2018) Pressbook secondary Mathematics for Cameroon schools form 2. Pressbook Plc
- > Mr Barton maths.com, the maths e-books of notes and examples
- > Charles Branch-Boyd PRENTICE HALL NATHEMATICS volume 1 chapter1.6

Preparation. Draw a Cartesian plane on the cardboard paper and take to class, if there is graph board in school, ensure its availability before lesson.

Prepare worksheet for the activity, print and photocopy according to the number of students in class.

Stages/Duration	Teaching/Learning Activities	Teacher's	Learners'	Teaching/Learning Points
		Activities	Activities	
	 A/- Verification of Pre-requisite knowledge Exercise 1)Using your ruler draw a horizontal line of 3cm 	 ✓ Put up the cardboard with the Cartesian plane on it or put up the graph 	✓ Volunteer to go to the graph board or cardboard to	Mastery in use of Instruments
Introduction (15 Mins)	 2)Plot the following points on the same Cartesian plane; A(1,2), B(-4,2), C(-4,-2) and D(1,-2) 3)Link the points from A to B, from B to C, from C to A and from D to A. 4)How many units are there from point A to point B? 	 ✓ Reads out the questions and calls up students to answer ✓ Reads out the problem situation to the students and 	answer the question ✓ Listen attentively ✓ Discuss the problem with group/table members and propose solutions	Plotting and Identification of points on the coordinate plane Spaces and Distances
(10 mm)	5) Evaluate a) $-4 - 1 = b$) $2 - 2 = c$) $1 - (-4) = b$	notes the students' proposals.	by show of hand if they can	
	 B/- Problem Situation Just before the confinement period due to COV cannot go there to measure the lengths of the use. The Map of the park gives the coordinates of the transformer of the park gives the coordinates of the problem is: How long is each diagonal? 	diagonals, nor measure	the sides of the park.	You have only the information on the map to
	Just before the confinement period due to COV cannot go there to measure the lengths of the use.	diagonals, nor measure	the sides of the park.	You have only the information on the map to

6. Link the points and name the plane figure	✓ Support students	read out their	3.A right triangle with the right angle at B
formed.	without giving to	results to the	4. AC = 5cm
7. Determined the number of unit from point	them the answers.	whole class	
A to point B. Find the square of this value.			5.
8.Determined the number of unit from point		,	
B to point C. Square this value.	✓ Request some	×	
	groups to read out		
9. Sum the squares of the units in 7) and 8).	their results and		
	compare their	✓ Copy summary	2
10. Find the square root of the value in (9)	answers.	notes in their	
above which represent the length of AC.	✓ Give explanations	notebooks	в р с
11. Divide the value of the length BC by two.	along the way as	HOLODOKS	1 0 1 2 3 4 5 6 7
12. Draw a straight line from D to meet AC.	students present		
Call this point of intersection M. Find the	their group results		
coordinates of point M.			6. A Right angled triangle with the right angle at B.
13. Add the x-components of point B and C			7) 3units and 3 ² = 9
and divide by two,			8) 4units, and $4^2 = 16$.
14. Add the y-components of point A and B and divide by two.	✓ Copies definitions		9) 9units + 16units = 25units
15. Write the values obtained in 13) and 14)	and concepts on the		$10)\sqrt{25} = 5$
as the coordinates of M.	board		11) The half of BC is the point D. D(5, 1)
16) Compare the coordinates of M obtained			12) See figure above for point M (5, 2.5)
in 12) and that obtained in 15).			13) Sum of abscissa $\frac{3+7}{2} = 5$
			2
Definitions and concepts			14) sum of ordinates: $\frac{4+1}{2} = 2.5$
Generally given the points			15) Coordinate of M (5, 2.5)
$P(x_1, y_1)$ and $Q(x_2, y_2)$ the distance between			16) They are the same
the points is denoted by d_{PQ} define by			Definitions and concerns
$d_{PQ} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$			Definitions and concepts
NB.			Generally given the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ the distance between
\checkmark The distance PQ is the same as the			the points is denoted by d_{PO} define by
distance QP			
 ✓ All points on a vertical straight line has a 			$d_{PQ} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
constant <i>x</i> -component.			NB.
			1

	 ✓ All points on a horizontal straight line has a constant <i>y</i>-component ✓ If M denotes the midpoint of PQ, the coordinate of M is given by M(^{x₁+x₂}/₂, ^{y₁+y₂/₂)} 			 ✓ The distance PQ is the same as the distance QP ✓ All points on a vertical straight line has a constant <i>x</i>-component. ✓ All points on a horizontal straight line has a constant <i>y</i>-component ✓ If M denotes the midpoint of PQ, the coordinate of M is given by M(^{x₁+x₂/₂, ^{y₁+y₂/₂)}}
Exercise for Application	Exercise 1. Find the lengths of the diagonals in the Problem Situation in metres. The points are A(10, 10); $B(90, 10)$; $C(100, 40)$ and D(20, 40). The diagonals are the line segments [AC] and line segment [BD]. Find the coordinate of the point E, their point of intersection which is equally the mid-point of each diagonal. 2) Determine the distance between the following pair of points a) $A(4,6)$ and $B(1,2)$ b) $P(-1,2)$ and $Q(2, -4)$ c) $P(-1,2)$ and $Q(2, -4)$ 3) Find the coordinate of the midpoint of the line joining the following pairs of points; a) $A(5,2)$ and $B(-3,4)$ b) $P(0,0)$ and $Q(1,3)$ c) $C(0,4)$ and $D(4,0)$ d) $E(2,1)$ and $F(-2,5)$	 Copies exercises on the board. Corrects the exercises with the students. Go to the problem situation and answer the stated problem. 	Copy exercises in their individual exercise books	Solution to exercise 1. The red broken lines are the diagonals $AC = \sqrt{(100 - 10)^2 + (40 - 10)^2}$ $= 94.868 \approx 94.9 \text{m to 1 decimal place}$ $BD = \sqrt{(90 - 20)^2 + (10 - 40)^2} = 76.16 \text{m}$ The point of intersection is E(55, 25). 2) a) $d_{AB} = \sqrt{(1 - 4)^2 + (2 - 6)^2}$ $= \sqrt{(-3)^2 + (-4)^2}$ $= \sqrt{9 + 16} = \sqrt{25} = 5 \text{ units}$ b) $d_{P0} = \sqrt{(2 1)^2 + (-4 - 2)^2}$ $= \sqrt{(3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} \text{ Units}$ 3) a) $M\left(\frac{5 - 3}{2}, \frac{2 + 4}{2}\right) = M(1, 3)$ b) $M\left(\frac{0 + 1}{2}, \frac{0 + 3}{2}\right) = M\left(\frac{1}{2}, \frac{3}{2}\right)$ c) $M\left(\frac{0 + 4}{2}, \frac{4 + 0}{2}\right) = M(2, 2)$

				d) $M\left(\frac{2-2}{2},\frac{1+5}{2}\right) = M(0,3)$
Conclusion	Homework1) A triangle has vertices A, B and C with coordinate $A(-2,5)$, $B(2,2)$ and $C(2,7)$. Find the length of the sides of the triangle and hence prove that the triangle is an isosceles triangle.2) Find the coordinates of the midpoints of the line joining the point a) $A(6,1)$ and $B(8,-2)$ b) $C(-1,-6)$ and $D(1,1)$	Write homework on the board	Copy down homework	ASSIGNMENT 1) 1) 1) 1) 1) 1) 1) 1) 1) 1)