AIMS
African institute for
Mathematical Science
NEXT EINSTEIN INITIATIVE

SAMPLE LESSON: MATHEMATICS

Class: Lower sixth

Title of Module: Plane Geometry

Title of Lesson: Differentiation of implicit functions

Title of Chapter: Derivatives
Duration of Lesson: 90mins

Class: Lower sixth

Subject: Mathematics

Module 3: Plane Geometry

Topic: Derivatives
Lesson: Differentiation of implicit functions Duration: 90 minutes
Lesson Objectives: By the end of the lesson learners should be able to:

- Find the derivatives of functions (in two dimensions) expressed implicitly.
- Use different rules of differentiation to differentiate a combination of implicit functions.

Prerequisite knowledge:

- Knowledge on differentiation of algebraic functions with good understanding of chain rule, product rule and quotient rule.
- Higher derivatives of algebraic functions.

References: - Pure and Applied Maths II by A Dawson and R Parson, 1988

- Pure Maths by Anucam, 2010, Core Course.
- A/L Maths made easy by Ewane, 2017
- National Syllabus, scheme of work
- Core Course, Bostock and Chandler
- An Intergrated Core Approach, Piankeh Albert

Scholars Program

Stage/ Duration	Teaching/Learning Activities	Learning points
Introduction (15 Minutes)	Verification of prerequisite knowledge 1. Differentiate each of the following with respect to x : (a) $3 x^{2}-x+5$ (b) $\frac{x^{2}+2}{2 x-3}$ (c) $2 x^{2} \sqrt{x-3}$ 2. Find $\frac{d^{2} y}{d x^{2}}$ given that Problem situation $y=2+3 x^{2}-x^{3}$ After the lessons on differentiation of algebraic functions, the chain rule, the product rule Afeminui was so frustrated because she could not do the following: Given that $x+3 x y-y^{3}=5$, show that $\left(x-y^{2}\right) \frac{d^{2} y}{d x^{2}}-2 y\left(\frac{d y}{d x}\right)^{2}+2\left(\frac{d y}{d x}\right)=0$ How can you help Afeminui out of her frustration?	1. Differentiating with respect to x : (a) $\frac{d}{d x}\left(3 x^{2}-x+5\right)=6 x-1$ (b) $\begin{aligned} \frac{d}{d x}\left(\frac{x^{2}+2}{2 x-3}\right) & =\frac{(2 x-3)(2 x)-\left(x^{2}+2\right)(2)}{(2 x-3)^{2}} \\ & =\frac{2 x^{2}-6 x-4}{(2 x-3)^{2}} \end{aligned}$ (c) $\frac{d}{d x}\left(2 x^{2} \sqrt{x-3}\right)$ $\begin{aligned} & =2 x^{2}\left(\frac{1}{2}\right)(x-3)^{-\frac{1}{2}}+4 x \sqrt{x-3} \\ & =\frac{x^{2}}{\sqrt{x-3}}+4 x \sqrt{x-3} \end{aligned}$ 2. y $\begin{aligned} y=2+3 x^{2}-x^{3} & \Rightarrow \frac{d y}{d x}=6 x-3 x^{2} \\ & \Rightarrow \frac{d^{2} y}{d x^{2}}=6-6 x \end{aligned}$ A different technique is required to differentiate functions of this form.
Lesson Development (25 minutes)	Definition: Explicit and implicit functions Activity: Differentiating $x=\boldsymbol{y}^{\mathbf{2}}$ Instructions: 1. Differentiate with respect to y and use the relation $\frac{d y}{d x}=1 / \frac{d x}{d y}$ to find $\frac{d y}{d x}$ in terms of y. 2. Rearrange $x=y^{2}$ to give $y=x^{\frac{1}{2}}$ and differentiate	Definition: A function can be explicit or implicit. - An explicit function is one in which one variable can be expressed solely in terms of the other variable e.g (i) $y=x^{2}+2 x$ (ii) $y=\sqrt{x+1}$ etc - An implicit function is one in which one variable is not expressed solely in terms of another variable e.g (i) $y=x y+2 y$ (ii) $x^{2}+y^{2}+2 x y=0$ etc. 1. $x=y^{2} \Rightarrow \frac{d x}{d y}=2 y$ and $\frac{d y}{d x}=1 / \frac{d x}{d y}=\frac{1}{2 y}$ 2. Rearranging, $x=y^{2} \Rightarrow y=x^{\frac{1}{2}}$ and $\frac{d y}{d x}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 x^{\frac{1}{2}}}=\frac{1}{2 y} \mathrm{as}$

Scholars Program

Stage/ Duration	Teaching/Learning Activities	Learning points
	with respect to x expressing $\frac{d y}{d x}$ in terms of y. 3. Differentiate both sides of $x=y^{2}$ with respect to x to have $\begin{equation*} 1=\frac{d}{d x}\left(y^{2}\right) . \tag{1} \end{equation*}$ Let $u=y^{2}$ (a) Find $\frac{d u}{d y}$ (b) Using $\frac{d u}{d x}=\frac{d u}{d y} \cdot \frac{d y}{d x}$ find an expression for $\frac{d u}{d x}$ (c) Using the result in (b) find $\frac{d}{d x}\left(y^{2}\right)$ in terms of y and $\frac{d y}{d x}$. (d) Substitute in (1) and and rearrange to obtain $\frac{d y}{d x}$ in terms of y 4. What do you observe?	before. 3. $x=y^{2} \Rightarrow \frac{d x}{d x}=\frac{d}{d x}\left(y^{2}\right) \Rightarrow 1=\frac{d}{d x}\left(y^{2}\right)$ Let $u=y^{2}$ (a) $u=y^{2} \Rightarrow \frac{d u}{d y}=2 y$ (b) $\frac{d u}{d x}=\left(\frac{d u}{d y}\right)\left(\frac{d y}{d x}\right)=2 y \frac{d y}{d x}$ (c) Hence $\frac{d}{d x}\left(y^{2}\right)=2 y \frac{d y}{d x}$ (d) Substituting in (1) gives $1=\frac{d}{d x}\left(y^{2}\right) \Rightarrow 1=2 y \frac{d y}{d x} \Leftrightarrow \frac{d y}{d x}=\frac{1}{2 y}$ as before 4. Observations: - The results in the three steps are the same $-x=y^{2} \Rightarrow 1=\frac{d}{d x}\left(y^{2}\right) \Rightarrow 1=2 y \frac{d y}{d x}$ This is implicit differentiation. Rule: $\frac{d}{d x}\left(y^{2}\right)=2 y \frac{d y}{d x} .$ To differentiate y^{2}, we differentiate it with respect to y and multiply by $\frac{d y}{d x}$.
Application Exercise (30 minutes)	Exercise 1. Differentiate $2 x y-x^{2}+y^{2}=5$ with respect to x. 2. Find the gradient of the curve $y-\frac{y}{x}+3 x=5$, $x \in \mathbb{R}-\{0,1\}$ at the point $(2,-2)$. 3. Given that $x^{2}+3 x y+y^{2}=7$ show that $(3 x+2 y) \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}+6\left(\frac{d y}{d x}\right)+2=0$	Exercise 1. Differentiate $2 x y-x^{2}+y^{2}=5$ with respect to x. 2. Find the gradient of the curve $y-\frac{y}{x}+3 x=5$, $x \in \mathbb{R}-\{0,1\}$ at the point $(2,-2)$. 3. Given that $x^{2}+3 x y+y^{2}=7$ show that $(3 x+2 y) \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}+6\left(\frac{d y}{d x}\right)+2=0$ Solution 1. $2 x y-x^{2}-y^{2}=5$

Stage/ Duration	Teaching/Learning Activities	Learning points
		$\begin{aligned} & \Rightarrow \frac{d}{d x}(2 x y)-\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)=0 \\ & \Rightarrow 2 x \frac{d y}{d x}+y(2)-2 x+2 y \frac{d y}{d x}=0 \\ & \Rightarrow 2(x+y) \frac{d y}{d x}=2(x-y) \\ & \Rightarrow \frac{d y}{d x}=\frac{x-y}{x+y} \end{aligned}$ Note that $\frac{d}{d x}(2 x y)$ is differentiated as a product. 2. $y-\frac{y}{x}+3 x=8$ $\begin{aligned} & \Rightarrow \frac{d y}{d x}-\left[y\left(-x^{-2}\right)+\left(\frac{1}{x}\right) \frac{d y}{d x}\right]+\frac{d y}{d x}+3=0 \\ & \Rightarrow\left(\frac{1}{x}-1\right) \frac{d y}{d x}=3+\frac{y}{x^{2}} \\ & \Rightarrow \frac{d y}{d x}=\left(\frac{3 x^{2}+y}{x^{2}}\right)\left(\frac{x}{1-x}\right)=\frac{y+3 x^{2}}{x(1-x)} \end{aligned}$ At the point $(2,-2), \frac{d y}{d x}=\frac{-2+3(2)^{2}}{2(1-2)}=-5$ $\begin{aligned} & \text { 3. } x^{2}+3 x y+y^{2}=7 \\ & \Rightarrow 2 x+3 x \frac{d y}{d x}+3 y+2 y \frac{d y}{d x}=0 \\ & \Rightarrow 2+3 x \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+3 \frac{d y}{d x}+2 y \frac{d^{2} y}{d x^{2}}+ \\ & 2\left(\frac{d y}{d x}\right)\left(\frac{d y}{d x}\right)=0 \\ & \Rightarrow(3 x+2 y) \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{2}+6 \frac{d y}{d x}+2=0 \text { hence. } \end{aligned}$ Note that $\frac{d}{d x}\left[3 x \frac{d y}{d x}\right]$ is differentiated as a product.
Summary (5minutes)	Summary of learning points - Some implicit functions can be rearranged to give explicit functions of one variable . - Product rule is very essential in differentiating	- Where possible rearrange an implicit function to give an explicit function of one variable e.g $x y-$ $2 x=3 \Rightarrow y=\frac{3+2 x}{x}$ giving y explicitly in terms of x.

Stage/ Duration	Teaching/Learning Activities	Learning points
	implicitly.	$-\frac{d}{d x}[\mathrm{f}(y)]=\mathrm{f}^{\prime}(x) \frac{d y}{d x}$ - To find $\frac{d}{d x}\left[\left(x^{n}\right)\left(y^{m}\right)\right]$ differentiate as product of x^{n} and y^{m} i.e $\frac{d}{d x}\left[\left(x^{n}\right)\left(y^{m}\right)\right]=\left(x^{n}\right) \frac{d}{d x}\left(y^{m}\right)+\left(y^{m}\right) \frac{d}{d x}\left(x^{n}\right)$ - Similarly $\frac{d}{d x}\left[\mathrm{f}^{\prime}(x) \frac{d y}{d x}\right]=\mathrm{f}^{\prime}(x) \frac{d^{2} y}{d x^{2}}+\mathrm{f}^{/ /}(x) \frac{d y}{d x}$.
Review of problem situation (10minutes)	Can you now help Afeminui out of her frustration? Given that $x+3 x y-y^{3}=5$, show that $\left(x-y^{2}\right) \frac{d^{2} y}{d x^{2}}-2 y\left(\frac{d y}{d x}\right)^{2}+2\left(\frac{d y}{d x}\right)=0$	Solution of Afeminui's problem $x+3 x y-y^{3}=5$ $\Rightarrow 1+3 x \frac{d y}{d x}+3 y-3 y^{2} \frac{d y}{d x}=0$ $\Rightarrow 0+3 x \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+3 \frac{d y}{d x}-3 y^{2} \frac{d^{2} y}{d x^{2}}-$ $6 y \frac{d y}{d x}\left(\frac{d y}{d x}\right)=0$ $\begin{aligned} & \Rightarrow 3\left(x-y^{2}\right) \frac{d^{2} y}{d x^{2}}+6 y\left(\frac{d y}{d x}\right)^{2}+6\left(\frac{d y}{d x}\right)=0 \\ & \Rightarrow\left(x-y^{2}\right) \frac{d^{2} y}{d x^{2}}-2 y\left(\frac{d y}{d x}\right)^{2}+2\left(\frac{d y}{d x}\right)=0 \text { hence. } \end{aligned}$
Conclusion (5minutes)	Assignment Copy the assignment in your books and do them at home. Our next class is on differentiation of trigonometric functions	Assignment 1. Differentiate the following (a) implicitly with respect to x (b) by expressing y explicitly in terms of x and (c) by expressing x explicitly in terms of y. Show that your results for (a), (b) and (c) are equivalent. (i) $x y=5$ (ii) $y^{2}=8 x$ 2. Find the gradient of the curve $2 x^{2}-5 y^{2}-3 x y=$ 0 at the point $(-1,1)$. 3. Given that $x^{2}+y^{2}-3 x-4 y-5=0$ show that $(y-2) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+1=0$

