

SAMPLE LESSON: MATHEMATICS

Class: Lower Sixth

Title of Module: Plane Geometry

Title of Lesson: Differentiation of Implicit functions

Duration of Lesson: 100mins

Title of Chapter: Derivatives

Name of Authors: Ndekelengwe Hilary St Benedict Bilingual College Mvolye, Yaoundé.

MATHEMATICS LESSON

SCHOOL: St Benedict Bilingual College Mvolye

Term: 2

CLASS: Upper Sixth; Duration: 100 minutes ;

No. on Roll: _____; Boys: _____; Girls:_____;

MODULE 16: Calculus I

TOPIC: Differentiation

Lesson: Differentiation of Implicit Functions Angle Theorems

Lesson Objectives: At the end of the lesson, the learners should be able to:

- Identify and differentiate implicit functions
- State real life situations where the knowledge of implicit functions is applied

Prerequisite knowledge: Students possess basic knowledge on

Differentiation including chain and product rule, quotient rule as well as differentiation of trigonometric functions. **Motivation**: Implicit differentiation is used in many areas of sciences like engineering.

REFERENCES

- A/L Mathematics Teaching Syllabus by Ministry of Secondary Education Cameroon / GCE Board
- Pure Maths by Anucam, 2010 Core Course;
- A/l Maths Made Easy by Ewane 2017

Stages/Duration	Teaching/Learning Activities	Teacher's Activities	Learners' Activities	Learning Points
Introduction	Motivation and verification of pre- requisite knowledge;	-corrects assignments with	-Students go to the board and solve the	Motivation and verification of pre- requisite knowledge;
15 mins	Find dy/dx for each of the following i). y = x ³ ii). y = (2x + 1) ⁵	students - gives exercises on the board.	assignment. -Students sit in groups.	Find dy/dx for each of the following i). y = x ³ ii). y = (2x + 1) ⁵
	iii) $y = sin(2x)$ iv) $y = x^3 cosx$	-organizes the class into groups. -guides students into discovering that	- -Student discuss	iii) $y = sin(2x)$ iv) $y = x^3 cosx$
Problem Situation	v) $2xy - x^2 + y^2 = 5$	into discovering that they need to go beyond the previous knowledge	among themselves to find out the way forward.	v) $2xy - x^2 + y^2 = 5$
Lesson Development 35 mins	Activity Differentiating x = y ² with respect to x Instructions To differentiate the right hand side let u = y ² and a) Find $\frac{du}{dy}$ b) using $\frac{du}{dx} = \frac{du}{dy}$. $\frac{dy}{dx}$ find an expression for $\frac{du}{dx}$ c)Hence find $\frac{d}{dx}(y^2)$ in terms of y.	-guides the students into discovering the principle underlining implicit differentiation.	-Students come to the conclusion of how to use implicit differentiation.	Activity Differentiating x=y ² with respect to x Instructions To differentiate the right hand side let u = y ² and a) Find $\frac{du}{dy}$ b) using $\frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx}$ find an expression for $\frac{du}{dx}$ c)Hence find $\frac{d}{dx}(y^2)$ in terms of y.
Summary 5mins		-explains -writes summary on the board.	- listen	$\mathbf{x} = \mathbf{y}^{2}$ $\frac{dx}{dx} = \frac{d}{dx}(\mathbf{y}^{2})$ $1 = 2\mathbf{y}\frac{dy}{dx}$
				<u>Definition</u> ; A function can be explicit or implicit.

Stages/Duration	Teaching/Learning Activities	Teacher's Activities	Learners' Activities	Learning Points
			-сору	Explicit functions can be written in the
		-ask questions		form y= f(x) eg y=x ² +2y. and y= $\sqrt{x+1}$
				etc
				While implicit functions are not easily
				written in the form $y= f(x) eg x^2 + y^2$
				+2xy=0
				In the above activity , y^2 is
				differentiated w.r,t y to have 2y and
				the result is multiplied by $\frac{dy}{dx}$. This
				process is called IMPLICIT
				DIFFERENTIATION
		-writes on the	- listen	Exercise 1; Find dy/dx in the following
Application	Exercise 1; Find dy/dx in the	board.		equations;
Exercises	following equations;			1) $2xy - x^2 - y^2 =$
	1) $2xy - x^2 - y^2 = 5$			2) $x^2 + xy + y^3 = 8$
20mins	2) $x^2 + xy + y^3 = 8$			3) Given that $y + x siny = 0$
	2) Given that $y + y = 0$			show that $\frac{dy}{dx} = \frac{-siny}{1+xcosy}$
	3) Given that $y + x siny = 0$		-сору	4) Given that $ye^x = sinx$. Show that
	show that $\frac{dy}{dx} = \frac{-siny}{1+xcosy}$			$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$
		-reads		
	4) Given that ye ^x = sinx. Show that			is an implicit differentiation
	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$		-ask questions	Practical exercise 2
	is an implicit differentiation			
	Practical exercise 2			$V = \frac{4}{3}\pi r^3$
	Using the balloons given to you, take	-explains		$\frac{dr}{dv} = \frac{3}{12} \pi r^2$
	some time to inflate it and make			$\frac{1}{dv} - \frac{1}{12} \frac{1}{v}$
	observations.			
	Given the formula of the volume of a			

Stages/Duration	Teaching/Learning Activities	Teacher's Activities	Learners' Activities	Learning Points
	sphere, V = $\frac{4}{3}\pi r^3$ What happens to the			
	radius when the volume increases?			
Evaluation 15 mins	Ask oral questions Announcement	Ask oral questions	Answer the questions asked to show proof of lesson mastery	Assignment 1) Given that $y^2 + xy - x^2 = 1$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when $x = y = 1$ 2) Given that siny = 2cosx, show
				that $\left(\frac{dy}{dx}\right)^2 = 1+3\sec^2 y$
Conclusion		-summarizes, write Assignment, and	- listen	
10mins		give announcements -roll call. -signs records of work.	-ask questions Answer present or absent	