SAMPLE LESSON: MATHEMATICS

Class: Upper Sixth/ Further Mathematics

Module: Geometry II
 Title of Lesson: Complex number and Plane Transformations

TOPIC: Complex Numbers

Duration of Lesson: 120mins

Name of Authors: Inspectorate of Pedagogy for the Far North Region

Module 4 : GEOMETRY II

Topic: Complex Numbers
Lesson: Complex number and Plane Transformations
Objectives: At the end of this lesson, the learners should be able to:

1) Determine the complex expression of some transformations: Translation, reflection, rotation and glide reflection ;
2) Find the image of points with given affixes under the transformations above.

Key question:

How to find and use the complex expression of some plane transformations?

Prerequisite knowledge:

\checkmark Verify whether students can give the characteristic elements of some transformations.
Motivation: The study of complex numbers comes to reinforce our knowledge and skills necessary to study plane geometry

Didactic materials

Chalk, colour chalk, Chalkboard, ruler and set square.

references

- EWANE ROLAND ALUNGE. Further Pure Mathematics Made Easy Third Edition.
-FURTHER Mathematics Teaching Syllabuses (January 2020)
Scholars Program

AIMS
African Institute for
Mathematical Science Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Stages/ Duration	Teaching/Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observation
Introduction (5mins)	Verification of Pre-requisites Exercise what are the characteristic elements of the following transformations:Translation;reflection;rotation and glide symmetry.	-Copies questions on the board -Calls students to the board	-Solve on the board as called by the teacher, while the others follow up keenly	Verification of Pre-requisites Exercise what are the characteristic elements of the following transformations:Translation;reflection;rotation and glide symmetry.	
Lesson Development and Summary (100mins)	Activity1 Given a vector \vec{v} with affix $3-4 i$. a)Find the complex expression of the translation $t_{\vec{v}}$ b)Find the image of the following points: $A(1+2 i), B(-2+2 i)$ under the translation $t_{\vec{v}}$. Resolution a) For any point $\mathrm{M}(\mathrm{z})$ of the plane $\boldsymbol{\mathcal { P }}$, $\begin{aligned} t_{\vec{v}}(M)= & M^{\prime} \leftrightarrow \overrightarrow{M M^{\prime}}=\vec{v} \\ & \leftrightarrow z_{\overrightarrow{M M \prime}}=z_{\vec{v}} \\ & \leftrightarrow z_{M r}-z_{M}=z_{\vec{v}} \\ & \leftrightarrow z^{\prime}-z=3-4 i \text { where } z^{\prime} \text { is the } \end{aligned}$ affix of M^{T} $\leftrightarrow z^{\prime}=z+3-4 i$ is the complex expression of the translation $t_{\vec{v}}$. b)let's find the images of A and B.	-Copies activity on the chalkboard -Instructs students to copy in their notebooks and allows them 10 minutes to research	-Follow the instructions and carry out the activity while interacting with each other -Copy notes in their books	Activity1 Given a vector \vec{v} with affix $3-4 i$. a)Find the complex expression of the translation $t_{\vec{v}}$ b)Find the image of the following points: $A(1+2 i), B(-2+2 i)$ under the translation $t_{\vec{v}}$. Resolution a) For any point $M(z)$ of the plane \mathcal{P}, $\begin{aligned} t_{\vec{v}}(M)= & M^{\prime} \leftrightarrow \overrightarrow{M M^{\prime}}=\vec{v} \\ & \leftrightarrow z_{\overrightarrow{M M \prime}}=z_{\vec{v}} \\ & \leftrightarrow z_{M \prime}-z_{M}=z_{\vec{v}} \\ & \leftrightarrow z^{\prime}-z=3-4 i \text { where } z^{\prime} \text { is the } \end{aligned}$ affix of M^{\prime} $\leftrightarrow z^{\prime}=z+3-4 i$ is the complex expression of the translation $t_{\vec{v}}$. b)let's find the images of A and B.	

Scholars Program

Stages/ Duration	Teaching/Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observation
	$\begin{aligned} & z_{B^{\prime}}=z_{B}+3-4 i \text { then } z_{B r}=1-2 i \\ & z_{A r}=z_{A}+3-4 i \text { then } z_{A r}=4-2 i \end{aligned}$ Activity2 Given a point A with affix $3-4 i$ a)Find the complex expression of the central symetry S with center A. b)Find the image of the following points: $k(1-i), B(-4+2 i)$ under the translation S. Resolution a)For any point $M(z)$ of the plane \mathcal{P} $\begin{aligned} \mathrm{S}(\mathrm{M})=\mathrm{M}^{\prime} & \leftrightarrow \overrightarrow{A M^{\prime}}=-\overrightarrow{A M} \\ & \leftrightarrow z_{\overrightarrow{A M^{\prime}}}=-z_{\overrightarrow{A M}} \\ & \leftrightarrow z_{M^{\prime}-} z_{A}=-\left(z_{M}-z_{A}\right) \\ & \leftrightarrow z_{M^{\prime}}=2 z_{A}-z_{M} \\ & \leftrightarrow z^{\prime}=-z+2 z_{A} \text { where } z^{\prime} \text { is the } \end{aligned}$ affix of M^{\prime} b)let's find the images of A and B. $\begin{aligned} & z_{K^{\prime}}=2 z_{A}-z_{K}=2(3-4 i)-(1-i)=5-7 i \\ & z_{B^{\prime}}=2 z_{A}-z_{B}= \\ & 2(3-4 i)-(-4+2 i)=10-10 i \end{aligned}$	-Copies notes on the board -Explains concepts -Dictates notes -Carries out the proves to obtain the various complex expression	Copy notes in their notebooks	$\begin{aligned} & z_{B r}=z_{B}+3-4 i \text { then } z_{B I}=1-2 i \\ & z_{A r}=z_{A}+3-4 i \text { then } z_{A r}=4-2 i \end{aligned}$ Activity2 Given a point A with affix $3-4 i$ a)Find the complex expression of the central symetry S with center A. b) Find the image of the following points: $k(1-i), B(-4+2 i)$ under the translation S. Resolution a)For any point $M(z)$ of the plane \mathcal{P} $\begin{aligned} \mathrm{S}(\mathrm{M})=\mathrm{M}^{\prime} & \leftrightarrow \overrightarrow{A M^{\prime}}=-\overrightarrow{A M} \\ & \leftrightarrow z_{\overrightarrow{A M \prime}}=-z_{\overrightarrow{A M}} \\ & \leftrightarrow z_{M^{\prime}-} z_{A}=-\left(z_{M}-z_{A}\right) \\ & \leftrightarrow z_{M^{\prime}}=2 z_{A}-z_{M} \\ & \leftrightarrow z^{\prime}=-z+2 z_{A} \text { where } z^{\prime} \text { is the } \end{aligned}$ affix of M^{\prime} b)let's find the images of A and B. $\begin{aligned} & z_{K^{\prime}}=2 z_{A}-z_{K}=2(3-4 i)-(1-i)=5-7 i \\ & z_{B^{\prime}}=2 z_{A}-z_{B}= \\ & 2(3-4 i)-(-4+2 i)=10-10 i \end{aligned}$	

Scholars Program

AIMS
African Institute for
Mathematical Science Mathematical Sciences
NEXT EINSTEIN INITIATIVE

Stages/ Duration	Teaching/Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observation
	Properties \rightarrow If $t_{\vec{v}}$ is a translation , the complex expression of $t_{\vec{v}}$ is given by: $z^{\prime}=z+z_{\vec{v}}$ \rightarrow) If S is a central symmetry with center Ω, the complex expression of S is given by: $z^{\prime}=-z+2 z_{\Omega}$ \rightarrow) If S is a reflection about the X-axis the complex expression of S is given by: $z^{\prime}=\overline{\mathbf{z}}$ \rightarrow) If S is a reflection about the Y-axis the complex expression of S is given by: $z^{\prime}=-\overline{\mathbf{z}}$ \rightarrow) If S is a reflection about the line (Δ) with equation $y=b$,the complex expression of S is given by: $z^{\prime}=\bar{z}+2 b i$ \rightarrow If $\mathrm{r}(\Omega ; \theta)$ is a rotation with center Ω and angle θ. the complex expression of r is given by: $z^{\prime}=e^{i \theta} z+\left(1-e^{i \theta}\right) z_{\Omega}$ \rightarrow If $h(\Omega, k)$ is a homothethy, the complex expression of h is given by: $z^{\prime}=k z+(1-k) z_{\Omega}$ Definition		Follow up as the teacher explains, asking and answering questions where necessary	Properties \rightarrow If $t_{\vec{v}}$ is a translation ,the complex expression of $t_{\vec{v}}$ is given by: $z^{\prime}=z+z_{\vec{v}}$ \rightarrow) If S is a central symmetry with center Ω, the complex expression of S is given by: $z^{\prime}=-z+2 z_{\Omega}$ \rightarrow) If S is a reflection about the X-axis the complex expression of S is given by: $z^{\prime}=\overline{\mathbf{z}}$ \rightarrow) If S is a reflection about the Y-axis the complex expression of S is given by: $z^{\prime}=-\overline{\mathbf{z}}$ \rightarrow) If S is a reflection about the line(Δ) with equation $y=b$,the complex expression of S is given by: $z^{\prime}=\bar{z}+2 b i$ \rightarrow If $r(\Omega ; \theta)$ is a rotation with center Ω and angle θ. the complex expression of r is given by: $z^{\prime}=e^{i \theta} z+\left(1-e^{i \theta}\right) z_{\Omega}$ \rightarrow) If $h(\Omega, k)$ is a homothethy , the complex expression of h is given by: $z^{\prime}=k z+(1-k) z_{\boldsymbol{\Omega}}$ Definition	

AIMS
African Institute for
Mathematical science African Institute for
Mathematical Sciences
NEXT EINSTEIN INITIATIVE

AI I MEXT EINSTEIN INITIATIVE

Stages/ Duration	Teaching/Learning activities	Teacher's Activities	Learners' Activities	Learning Points	Observation
	Glide symmetry is a composition of a translation and a orthogonal symmetry where the vector of translation is a direction vector of the axis of symmetry. $f=t_{\vec{v}} 0 S_{\Delta}$ \rightarrow If $f=t \vec{v} 0 S_{\Delta}$ is a glide symmetry Where (Δ) has as equation $y=b$ and \vec{v} a direction vector of (Δ), the complex expression of f is given by: $z^{\prime}=\bar{z}+2 b i+Z_{\vec{v}}$			Glide symmetry is a composition of a translation and a orthogonal symmetry where the vector of translation is a direction vector of the axis of symmetry. $f=t_{\vec{v}} 0 S_{\Delta}$ \rightarrow If $f=t \vec{v} 0 S_{\Delta}$ is a glide symmetry Where (Δ) has as equation $y=b$ and \vec{v} a direction vector of (Δ), the complex expression of f is given by: $z^{\prime}=\bar{z}+2 b i+Z_{\vec{v}}$	
Conclusion (5mins)	Bilingual game Give the equivalence of the word complex expression in French. Home work Announcement of the next lesson. The next lesson will be on Complex number and similarity	Copies questions on the board	Copy questions in their note books	Bilingual game Give the equivalence of the word complex expression in French_ Assignments Announcement of the next lesson. The next lesson will be on Complex number and similarity	

